

Page 1 of 20

KREO HMI

Javascript guidelines

Software

Connect

Ideas.

Shape

solutions.

Page 2 of 20

Table of contents

Scope ... 3

System variables .. 3

RTsvg public API ... 4

Scripting .. 6

Page Widget .. 6

Actions... 7

RTprjCallbacks ... 7

RTprj.actions.apps ... 8

RTprj.actions.pages ... 8

RTprj.actions.timers... 11

RTprj.actions.security .. 12

RTprj.actions.system.. 13

RTprj.actions.langs .. 14

RTprj.actions.interaction ... 14

Gadgets (external javascript) ... 15

Examples ... 16

Server script with returned value ... 16

Sample 1 .. 16

Sample 2 .. 16

Changing page from server data .. 17

Reading the value of a Tag ... 18

Changing the text of a label ... 18

Page 3 of 20

Scope

This document contains the description of the public API of the integrated JavaScript engine (RTsvg).
This engine let the user JavaScript interact with the Kreo HMI project components.

System variables

The client application exposes a sets of system variables managed as client-only tags.
You can bind them to properties as any other tags.
You can also easily access their values from JavaScript if necessary.

SYS_UIUserName Name of the current user. This is the empty string when no
user is logged in.

SYS_UIUserLevelInteract Integer ranging [0,10] indicating the security of the current
level for interacting with controls. The lower the level, the
highest the privileges.

SYS_UILanguageName Name of the language used to translate displayed texts.

SYS_UILanguageId Index of the language used to translate displayed texts

SYS_UIClientId Unique identifier of the client connection. This identifier is
unique for all the connections from a given client.

SYS_UIClientIP IPv4 address of the client as seen by the server. This address
may differ from the real address when the server is accessed
thru NAT or proxy.

SYS_UIClientName Human-readable name of the client as seen as by the server.
This name is the one assigned to the IPv4 address in Kreo HMI.

Page 4 of 20

RTsvg public API

Functions that can be invoked from user-defined JavaScript scripts without any restriction.

esa.RTdata.setTag (id, val) RTdata.setTag(id, val) sets the whole value of
the tag id to value. The function takes care of
handling all the special cases where the tag is a
client-only tag, a PLC-direct tag, or a standard
server tag.

If id is NOT an integer, the identifier of the tag
is searched for using the string representation
of id within the collection of the tags marked in
Kreo HMI as “use in scripts”.

esa.RTdata.getTag(id) RTdata.getTag(id) gets the whole value of the
tag id. The function takes care of handling all
the special cases where the tag is a client-only
or standard server tag.

If id is NOT an integer, the identifier of the tag
is searched for using the string representation
of id within the collection of the tags marked in
Crew as “use in scripts”.

NOTE: the function does not trigger a PLC
action and it returns the last value received
from the server or the last written for client-
only tags. Thus, this function is guaranteed to
return a valid value when the tag is referenced
to a currently visible page and the page has
been updated by the server. If you need to
retrieve a value from the PLC without bothering
about the current state of the application, you
should use a server-side ST script (see the
examples at the end of this document).

esa.RTdata.subscribe RTdata.subscribe(tagId,owner,callback)
registers the callback callback of the object
owner to variations of the tag identifier by its
numerical identifier tagId. The callback is
invoked on the context of its owner (that is this
matches owner) and has as single parameter a
tag object.

Page 5 of 20

esa.RTdata.unsubscribe RTdata.unsubscribe(tagId,owner) unregisters
the callback previously associated to a call to
RTdata.subscribe for the given tagId and owner.
When tagId is not supplied, that is invoked as
RTdata.unscribe(owner), then all callbacks
associated to owner are removed.

esa.RTdata.getTagId RTdata.getTagId(tagName, cb) returns the
internal identifier of a tag with the given name.
The callback cb (tagName, id) will be invoked
with the name and associated identifier, -1 in
case of failure. This function allows to
manipulate tags by name without any need to
mark the tags with “use in scripts”.

esa.RTdata.getReadTagId RTdata.getReadTagId(tagId) returns the
internal identifier of a tag associated to the
server-side id. This function must be called
when it is required to determine the client-side
identifier of a tag following a server-notification
of a change to that tag.

esa.RTdata.getWriteTagId RTdata.getWriteTagId(tagId) returns the
external identifier of a tag associated to the
client-side id. This function must be called when
it is required to change the value of a tag on the
server from the client.

esa.RTdata.getUseInScriptTagId RTdata.getUseInScriptTagId() returns the
internal identifier of a tag from name. Is valid
only for tag with flag “UseInScript”.
NB: For client tags use also getWriteTagId for
get correct server tagid

Page 6 of 20

Scripting

The RTprj.scripts namespace/object exposes various client-side functions that may be useful to
access various elements from a JavaScript code.

findWidgetByName(name)
findWidgetByName(name, popup)

Searches for an SVG widget identified by its
name. In the first form, the widget is searched
into the current page. In the second form, the
widget is searched onto the popup with the
given name. The returned value is null when no
widget is found or no popup with the given
name is opened.

Page Widget
Functions of page widget objects (“findWidgetByName”)

IsVisible() Check if widget is visible. Check "visibility"
attribute of svg element. This method check
also parent visibility (Group or
template).

Page 7 of 20

Actions

The RTprj.actions namespace/object exposes various client-side functions that trigger

actions and specifically intended for JavaScript scripts; these actions are executed on the

client side, their effects may also affect the runtime (for instance when loading recipes). The

actions are grouped by categories, not all them available to all applications as they may not

be relevant in all contexts.

RTprjCallbacks
The RTprj namespace/object contains low-level functions related to the applications. You

must include the file RT.app.core.js to get access to the namespace.

onDialogActivityListener(key, callback) Registers or unregisters a callback that will be
invoked whenever a window activity occurs on
a system dialog. The key is used to identified
the callback; when the callback is missing, the
key is used to unregister the callback of the
previous call.

This method is quite useful when you want to
show or hide data on the screen when a system
dialog is presented or hidden. Take care that
system dialogs are working like a stack with
many system dialogs opened one on top of the
other (though only one may have the focus).

See the examples paragraph for a sample
usage.

Page 8 of 20

RTprj.actions.apps
The RTprj.actions.apps namespace/object contains functions related to the applications,

typically sending a message to the master application to switch application or communicate

with another application. You must include the file RT.app.core.js to get access to the

namespace.

showApp(appId)
showApp(appId, args)

Opens the application indicated to by the given
application. Identifier. The application
identifier must be one of those registered
within the /config/my_apps.js file, with the
following constants recommended for known
system ones (with
RTprj.actions.apps as namespace):

 APP_RTSVG

 APP_ALARMS
 APP_TRENDS

 APP_RECIPES

 APP_USERS
 APP_FDA

RTprj.actions.pages
The RTprj.actions.pages namespace contains functions related to the RTsvg pages (both full screen
and pop_up). You must include the file RT.app.svg.core.js to get access to the namespace.

selectPage(pageId) Presents the page with the given page
identifier. If no page exists for the given
identifier then nothing happens.

If pageId is an integer, then the page with the
given identifier is presented, either regular or
popup. If a regular page and popup page have
the same identifier, the regular page is used.

If pageId is a string, then the page with the
given name is presented, either regular or
popup. If a regular page and popup page have
the same name, the regular page is used.

If pageId is not given, then the previously
displayed page is presented. The implicit
navigation stack created by the selectPage,
nextPage, and previousPage functions is limited

Page 9 of 20

to an undefined number of entries, and no
assumption should be made regarding its
maximum size (though the maximum is about
10).

nextPage(abs) Presents the next page in the circular list of the
pages making up the current sequence. If there
is no sequence or the abs parameter is true,
then the list of the pages is assumed; in this
case the implicit order is determined upon
compilation with the pages ordered by pageNo
ascending.

previousPage(abs) Presents the previous page in the circular list of
the pages making up the current sequence. If
there is no sequence or the abs parameter
is true, then the list of the pages is assumed; in
this case the implicit order is determined upon
compilation with the pages ordered by pageNo
ascending.

nextPopup() Presents the next popup page in the circular list
of the popup pages. Upon compilation, the
popup pages are ordered by pageNo ascending.

previousPopup() Presents the previous popup page in the
circular list of the popup pages. Upon
compilation, the popup pages are ordered by
pageNo ascending.

closePopup(pageId) Closes the popup page with the given page
identifier. If no such popup page is opened then
nothing happens.

If pageId is an integer, then the popup page
with the given identifier is closed.

If pageId is a string, then the popup page with
the given name is closed.

closeAllPopups() Closes all opened popup pages.

Page 10 of 20

openPopupTo (pageNo, x, y, w, h) Open the popup page with the given page
identifier. If no popup exists for the given
identifier then nothing happens.

If pageNo is an integer, then the popup with
the given identifier is open.

If pageNo is a string, then the popup page with
the given name is open.

x, y, w, h [Optional] position and dimension of
popup. If not present are used project default
value

setPopupLeft(pname, value)
setPopupTop(pname, value)
setPopupWidth(pname, value)
setPopupHeight(pname, value)
setPopupPosition(pname, x, y, w, h)

Set position and dimension of open popup.

pname: Name of open popup
value: position/dimension value

openPopupUnder(pname, widget) Open popup under a specified widget

pname: Name of open popup
widget: Javascript widget object data (see
findWidgetByName)

Page 11 of 20

RTprj.actions.timers

The RTprj.actions.timers namespace/object contains functions to command client timers.

start(name) Starts the timer with the given name

startId(id) Starts the timer with the given id

stop(name) Stop the timer with the given name

stopId(id) Stops the timer with the given id

suspend(name) Suspend the timer with the given name

suspendId(id) Suspend the timer with the given id

setCounter(timerName, value) Set the counter value of a timer with given
name

setCounterId(id, value) Set the counter value of a timer with given id

Page 12 of 20

RTprj.actions.security
The RTprj.actions.security namespace/object contains functions related to the

identification of the user interacting with the client application. They are mainly limited to

login and log off functions that are activating security levels, thus allowing or preventing the

access to widgets, pages, or actions. You must include the file RT.app.core.js to get access to

the namespace.

login(user, password, cb) Logs in with the given credentials

If user or password are not passed during the
call, then its presents the login screen where
the user must enter his/her credentials.
The optional callback cb with prototype
cb(err, name) is invoked as a result of the call
with err indicating the status (0 for success,
anything else for an error code) and name the
name of the logged user (if err is 0).

logoff() Logs off the current user and switches back to
the previous one, usually the default user
account.

getGroupPermission(authName) Returns permission for actual user group and
authorization name

getGeoPermission(authName) Returns permission for actual security client
and authorization name

Page 13 of 20

RTprj.actions.system
The RTprj.actions.system namespace/object contains system functions, typically changing
heavily the behaviour of the client or server application. You must include the file RT.app.core.js to
get access to the namespace.

exitToSystem() On the terminal, the function closes the client and
runtime applications and goes back to the default
terminal application. When executed from a remote
client, the action acts as if executed locally on the
terminal, however the side-effect of the hosting
browser is obviously undefined as one consequence
of the action is to terminate the web server.

execFunction(id, argv) Executes the runtime function id with the given array
of parameters, each parameter is presented as 2
entries, the first one indicating the type and the
second one the value; the argument types are:

 RTcommon.SYS_FUNC_ARGTYPE_CONST
(0), a simple constant value (string or
number).

 RTcommon.SYS_FUNC_ARGTYPE_TAG_REF
(2), the value will be read from the value of
the tag which identifier is the parameter.

For example, writing the value 3 to a tag which
identifier is 42 is made using the call:
ExecFunction(1000, 0, 42, 0, 3). Add 5 to the
tag 42 is made using the call ExecFunction(1001, 0,
42, 0, 5).

execSTScript(name,args…, cb)
Executes a server-hosted ST script with the given
name. The optional callback is invoked with the
result of the call, thus allowing retrieving a returned
value from the executed script. The function accepts
a variable number of parameters to pass to the ST
script along with a callback (last parameter) that is
invoked with the result of the execution. See the
examples then after for further details.
Note that the call is not blocking, thus the usage of the
callback cb to handle the returned code of the ST
script.

Page 14 of 20

RTprj.actions.langs
The RTprj.actions.langs namespace/object contains languages functions.

selectLanguage (langId) Activate a specific language

nextLanguage() Activate the next language

previousLanguage() Activate the previous language

RTprj.actions.interaction
The RTprj.actions.interaction namespace/object contains functions for enable/disable user
interaction.

enable Enable user interaction (only single client)

disable Disable user interaction (only single client)

Page 15 of 20

Gadgets (external javascript)

The RTprj.gadgets is the container for the user gadgets. This exposes one and only one functions
that is used to load gadgets. Typically, this container is used by gadgets to add their own
requirements or registrations.

loadGadget(arg) Loads a set of files. The general interface is:
esa.RTprj.gadgets.loadGadget({

files :
[...list of
files...],
onloaded :
callback,
Onerror : callback

});

The files properties is an array of resources
JavaScript (.js) and Stylesheet (.css) files to
load. When supplied, the onloaded function is
called whenever a file is loaded. When
supplied, the onerror function is called when
an error occurred whilst loading a file; see the
HTML/JavaScript documentation for error
handlers on load error for further details.

Note that the files are registered to load in the
indicated order but the actual load order is not
guaranteed because under the control of the
browser among other things. See the official
HTML/JavaScript documentation for details.

In order to access resources located in the
installed directory of the application, you must
use the /$RESOURCES prefix in the URLs of the
files.

esa.RTprj.gadgets.loadGadget({

files :[
'/$RESOURCES/navbar_103.js',
'/$RESOURCES/navbar_003.css'

],

onloaded : function(ev, index, file)

{

alert('NAVBAR 102 LOADED: [' + index + ']' + file);

},

onerror : function(ev, index, file)

Page 16 of 20

Examples

Server script with returned value

Sample 1
ST script:

JavaScript code to execute the function and read the value:

Sample 2
ST script

{

alert('FILE NOT EXIST ERROR');

}

});

Page 17 of 20

JavaScript code to execute the function and read the value:

Changing page from server data

The JavaScript requests a value from a server ST script and changes page based on it.

ST script:

JavaScript code to execute the function and change page:

RTprj.actions.system.execSTScript('FC_Read_String', function(err, val)
{

if (err)
{

alert('an error occured: ' + err);
return;

}

alert('script response: ' + val);
});

FUNCTION FC_Read_PageId : INT
FC_Read_PageId := 2;

END_FUNCTION;

RTprj.actions.system.execSTScript('FC_Read_PageId', function(err, val)
{

if (err)
{

alert('an error occured: ' + err);
return;

}

// ensure integer
const pageId = parseInt(val);
if (pageId > 0)
{

RTprj.actions.pages.selectPage(pageId);
}

});

Page 18 of 20

Reading the value of a Tag
The JavaScript requests the value of a tag using a server ST script. Note that parameters are

passed from JavaScript to ST.

ST script:

JavaScript code to read the value of a tag with a given name:

Changing the text of a label
The following code change the text of a label named $gadget.title to match the title of the
current page:

FUNCTION FC_Read_Tag : INT
VAR_INPUT

tagName : WSTRING[100];
END_VAR;
FC_Read_Tag := TAG_READVALUE(tagName);

END_FUNCTION;

RTprj.actions.system.execSTScript('FC_Read_Tag', 'Tag1', function(err, val)
{

if (err)
{

alert('an error occured: ' + err);
return;

}

alert('script response: the value of the tag is ' + val);
});

const wtitle = RTprj.scripts.findWidgetByName('$gadget.title');

if (wtitle)
{

wtitle.content(RTprj.pages[RTprj.pageIndex].title);

}

Page 19 of 20

Page 20 of 20

Connect
ideas.
shape
solutions.

ESA S.p.A. | www.esa-automation.com |

	Scope
	System variables
	RTsvg public API
	Scripting
	Page Widget

	Actions
	RTprjCallbacks
	RTprj.actions.apps
	RTprj.actions.pages
	RTprj.actions.timers
	RTprj.actions.security
	RTprj.actions.system
	RTprj.actions.langs
	RTprj.actions.interaction

	Gadgets (external javascript)
	Examples
	Server script with returned value
	Sample 1
	Sample 2

	Changing page from server data
	Reading the value of a Tag
	Changing the text of a label

