

 ST-Script Guidelines 1.38

 Page 1 of 562

KREO HMI

Structured Text Script guideline

Software

 ST-Script Guidelines 1.38

 Page 2 of 562

EXTERNAL REFERENCES

Sources referenced in the present document:

[1] ST Scripts Definition
 R:\WCE\Documenti\BlueOcean\RT7\Scripts\ST\ST-Scripts Definition.doc
 Description of implemented ST scripts syntax, functionalities and limitations

[2] ST Scripts P-CODE
 R:\WCE\Documenti\BlueOcean\RT7\Scripts\ST\ST-Scripts P-Code.doc
 Specification of formats and mechanics involved in scripts P-Code generation and interpretation

 ST-Script Guidelines 1.38

 Page 3 of 562

HISTORY

0.1 - 25.01.2019 - First document release

1.0 - 09.04.2019 - First distributed version
 Implementation limited to rt-only methods:
 missing SoftPlc, EveryWare, UI and Printing methods

1.1 - 02.12.2019 - Added tools for structured tags management
 see TAG_GETFIELDOFFSET and TAG_GETFIELDADDRESS

1.2 - 14.01.2020 - Added descriptions for ST standard functions
 22.01.2020 - Extended File functions with support of $SECTIONS in paths

1.3 - 13.02.2020 - LIBRARY functions section isolated and expanded
 COMLIB and COMVAR sections still missing details
 31.03.2020 - Added "variant" access support to TAG_READITEM and TAG_WRITEITEM

1.4 - 13.05.2020 - Included basic functions for matrix-users (to be integrated after "phase 2")

1.5 - 25.05.2020 - Extended functions for revised FDA features
 see USER_ISLOCKED, USER_PERMANENTLOCK for permanent lock states
 see USER_ADD, USER_SETSIGNATURE for electronic signature support
 see AUDIT_READ for new logged information
 see AUDIT_EXPORT, AUDIT_RESET for exports extensions

1.6 - 01.07.2020 - Added function SAVESCREEN
 Added function GETCLIENTID

1.7 - 15.07.2020 - Added the whole section for EveryWare functions (both basic and mailing-oriented)
 see chapter 10. Common - EXTERNAL

1.8 - 23.07.2020 - Added the whole section for PDF creation functions
 see chapter 9. Common - PRINT
 31.07.2020 - Extended users' export (see updated parameters in USER_EXPORT)

1.9 - 21.09.2020 - Added specifications about the - already released - COMLIB functions

1.10 - 23.09.2020 - Added specifications about the - already released - COMVAR functions

1.11 - 15.10.2020 - Added function RECIPE_COMPARESET
 added functions RECIPE_GETFIELDVALUE and RECIPE_SETFIELDVALUE
 added recipe name parameter to RECIPE_UPLOAD

1.12 - 11.11.2020 - Added parameters to function RUNAPPLICATION

1.13 - 18.11.2020 - Added function SPLIT for strings management
 Added functions RECIPE_GETFIELDSNUMBER and RECIPE_GETFIELDNAME
 Added variables RT_WORKMODE and RT_SIMULATION

1.14 - 04.12.2020 - Added function RECIPE_GETFIELDINDEX

1.15 - 14.01.2021 - Added functions ALARM_GETIDFROMKEY and ALARM_GETMSGFROMKEY

 Extended function RECIPE_GETFIELDNAME (multiple identification modes)
 Extended function RECIPE_GETTAGNAME (support implicit comparison tags)

 ST-Script Guidelines 1.38

 Page 4 of 562

 Extended function RECIPE_COMPARESET (support implicit comparison tags)
 Added function RECIPE_GETCOMPAREINDEX
 Added function RECIPE_COMPAREFIELD

1.16 - 19.02.2021 - Added function FILE_ABSOLUTEPATH

 Added functions DLOG_GETDISCARDINVALID and DLOG_SETDISCARDINVALID
 Added functions for buzzer and lamp support

1.17 - 17.03.2021 - Added functions ALARM_GETINFO and ALARM_GETNAMEFROMKEY

1.18 - 10.09.2021 - Extended function USER_ADD with RFID parameters
 Added function USER_SETRFID

 Added function USER_HASRFID

 Added functions TAG_SETVALUE, TAG_FLUSHVALUE

 Added functions TAG_GETFIELDVALUE, TAG_SETFIELDVALUE

1.19 - 13.10.2021 - Extended recipe functions with new parameter for event logging inhibition

(see RECIPE_LOAD, RECIPE_SAVE, RECIPE_UPLOAD, RECIPE_DOWNLOAD, RECIPE_UPLOADBUFFER,
RECIPE_DOWNLOADBUFFER, RECIPE_DELETE, RECIPE_RENAME)

1.20 - 20.10.2021 - Added function SHOWTASKBAR

1.21 - 23.11.2021 - Extended recipes import/export functions with the ability to select the needed recipes
 (see RECIPE_EXPORT, RECIPE_EXPORTFLAT, RECIPE_IMPORT)

1.22 - 02.02.2022 - Added functions GET/SETCLIENTDEBUGRIGHTS and GETCLIENTDEBUGSTATE
 Added functions GET/SETCLIENTOFFSCAN

1.23 - 25.03.2022 - Marks the integration of _RETURNCODE and _RETURNERROR statements (specified in [1])

1.24 - 08.04.2022 - Added functions for recorded alarms information browsing
 (see ALARM_GETFIRST/NEXTxxx functions and ALARM_RECxxx variables)
 Extended PDF_OPEN with protection parameters
 Added function SIZEOF

1.25 - 03.05.2022 - Added function TAG_GETCLIENTTAGNAME

 Added functions SET/GETCLIENTKEYBURST

1.26 - 10.05.2022 - Added function TYPEOF

 Added type conversion aliases (C$$$) for all the functions ANY_TO_$$$
 Added function TAG_ASSIGNSTRUCT
 Fixed output type of function TAG_GETCLIENTTAGNAME

1.27 - 31.05.2022 - Extended xTRIM functions

 Added functions ALARM_EXPORTCONFIG and DLOG_EXPORTCONFIG

1.28 - 24.06.2022 - Added functions SETRESTAPIPREFIX and SETRESTAPIRESPONSE

1.29 - 29.06.2022 - Added functions RECIPE_GETSTRRECORD and RECIPE_GETSTRRECORDS

 Added functions ALARM_GETFIRSTHPACK and ALARM_GETNEXTHPACK

1.30 - 13.09.2022 - Extended function AUDIT_READ (updated information set for clients and tags)
 04.10.2022 - Added function RECIPE_SETFIELDEXPORT

1.31 - 26.05.2023 - Added function SETHHLEDSTATE

1.32 - 30.06.2023 - Added function REPORT_EXPORT

 ST-Script Guidelines 1.38

 Page 5 of 562

1.33 - 20.09.2023 - Extended and documented TRACE function

1.34 - 03.10.2023 - Extended REPORT_EXPORT function with language parameter

1.35 - 07.02.2024 - Added functions SENDRESTAPIREQUEST and GETRESTAPIRESPONSE
 See also RESTAPIRESPONSE variable and RESTxxx constants

1.36 - 19.03.2024 - Added parameter TRACE to function SENDRESTAPIREQUEST
 Added function REPORT_ENABLESECTION
 See also the related REPORT_CLASSxxx constants

1.37 - 09.04.2024 - Added USERS selection to function REPORT_ENABLESECTION
 (see REPORTCLASSUSERS among constants as well)
 Extended functionality of function REPORT_ENABLESECTION
 Added parameters FROM/TO to function DLOG_EXPORT
 Added parameters FROM/TO to function ALARM_EXPORTHISTORY

1.38 - 02.05.2024 - Added function REFRESHRTC
 Added a set of variables (TIMExxx) with time-related information

[ actBase.cpp / ModuleVersion.inc]

 ST-Script Guidelines 1.38

 Page 6 of 562

TABLE OF CONTENTS

1. Document Scope ... 17
2. Functions List ... 18
3. Standard ST LANGUAGE .. 32

ADD ... 32
SUB ... 32
MUL .. 32
DIV .. 33
MOD ... 33
ABS.. 33
SQRT ... 34
LN .. 34
LOG ... 34
EXP .. 34
POW .. 35
SIN .. 35
COS ... 35
TAN ... 35
ASIN .. 36
ACOS ... 36
ATAN ... 36
FRACTION ... 36
TRUNC .. 37
ROUND ... 37
MIN ... 37
MAX .. 38
LIMIT ... 38
SEL .. 38
MUX .. 39
RND ... 39
SHL .. 40
SHR ... 40
ROL ... 40
ROR ... 41
AND .. 41
OR ... 41
XOR ... 42
NOT ... 42
LT .. 44
LE .. 44
GT ... 44
GE ... 44
EQ ... 44
NE ... 44
LEN .. 46
LEFT .. 46
RIGHT .. 46
MID ... 46
CONCAT .. 47

 ST-Script Guidelines 1.38

 Page 7 of 562

INSERT .. 47
DELETE .. 48
REPLACE .. 48
REVERSE .. 49
SPLIT ... 49
FIND .. 50
RFIND .. 51
LCASE .. 51
UCASE ... 51
TRIM ... 52
LTRIM .. 52
RTRIM ... 53
SETLENGTH ... 53
HEX ... 54
OCT ... 54
BIN .. 54
ASC .. 54
ISSTRUCTURE .. 56
ISFUNCTION .. 56
ISARRAY .. 56
NUMDIM .. 56
LBOUND .. 57
UBOUND ... 57
SIZEOF ... 57
TYPEOF ... 58
DEG_TO_RAD ... 60
RAD_TO_DEG ... 60
BCD_TO_BIN ... 60
BIN_TO_BCD ... 60
ANY_TO_SINT ... 62
ANY_TO_INT ... 62
ANY_TO_DINT .. 62
ANY_TO_LINT ... 62
ANY_TO_USINT ... 62
ANY_TO_UINT .. 63
ANY_TO_UDINT .. 63
ANY_TO_ULINT ... 63
ANY_TO_REAL .. 63
ANY_TO_LREAL ... 63
ANY_TO_TIME .. 63
ANY_TO_LTIME .. 64
ANY_TO_DATE .. 64
ANY_TO_TOD ... 64
ANY_TO_LTOD .. 64
ANY_TO_DT .. 64
ANY_TO_LDT .. 65
ANY_TO_STRING .. 65
ANY_TO_WSTRING ... 65
ANY_TO_CHAR ... 65
ANY_TO_WCHAR .. 65
ANY_TO_BOOL ... 65
ANY_TO_BYTE .. 65

 ST-Script Guidelines 1.38

 Page 8 of 562

ANY_TO_WORD .. 66
ANY_TO_DWORD ... 66
ANY_TO_LWORD .. 66
< constants > .. 67

4. SYSTEM .. 68
TRACE ... 68
RUNAPPLICATION ... 69
KILLAPPLICATION .. 71
RUNSCRIPT ... 72
EXITRUNTIME ... 73
SLEEP .. 74
LSLEEP ... 74
ERRORGETMESSAGE ... 75
ERRORGETMODULE .. 76
ERRORRESET ... 77
FLUSHCONFIG ... 78
FLUSHPERSISTENT .. 79
REFRESHIPADDRESSES .. 80
SETRESTAPIPREFIX .. 81
SETRESTAPIRESPONSE .. 82
SENDRESTAPIREQUEST ... 83
GETRESTAPIRESPONSE ... 85
SETTIMESSYTEM ... 86
GETTIMESYSTEM .. 87
GETNUMCLIENTSWEB .. 88
GETNUMCLIENTSUI .. 89
GETNUMCLIENTSNET ... 90
LANGUAGEGET ... 91
LANGUAGESET .. 92
LANGUAGENEXT ... 93
LANGUAGEPREVIOUS ... 94
GETURL ... 95
GETTICKS .. 96
GETLTICKS ... 97
SETRTC .. 98
SETRTC_UTC ... 99
GETRTCTOD .. 100
GETRTCLTOD .. 101
GETRTCDATE ... 102
GETRTCDT ... 103
GETRTCLDT ... 104
GETRTCTOD_UTC .. 105
GETRTCLTOD_UTC .. 106
GETRTCDATE_UTC .. 107
GETRTCDT_UTC .. 108
GETRTCLDT_UTC... 109
REFRESHRTC ... 110
UTC_TO_LOCAL .. 111
LOCAL_TO_UTC .. 112
GETYEAR ... 113
GETMONTH .. 114
GETDAY ... 115

 ST-Script Guidelines 1.38

 Page 9 of 562

GETWEEKDAY ... 116
GETHOURS .. 117
GETMINUTES .. 118
GETSECONDS .. 119
GETMSECONDS ... 120
GETNSECONDS ... 121
MAKETOD ... 122
MAKELTOD ... 123
MAKEDATE ... 124
MAKEDT .. 125
MAKELDT .. 126
GETCLIENTID ... 127
SETCLIENTDEBUGRIGHTS ... 128
GETCLIENTDEBUGRIGHTS ... 129
GETCLIENTDEBUGSTATE ... 130
SETCLIENTOFFSCAN .. 131
GETCLIENTOFFSCAN ... 132
SETCLIENTKEYBURST .. 133
GETCLIENTKEYBURST.. 134
SAVESCREEN ... 135
BEEP .. 136
BEEPON .. 137
BEEPOFF ... 138
LIGHTUP .. 139
LIGHTDOWN ... 140
LIGHTSET .. 141
LIGHTGET .. 142
LIGHTGETMAX .. 143
SHOWTASKBAR... 144
SETHHLEDSTATE ... 145
< variables > .. 146
< constants > .. 150

5. Common - FILES ... 151
FILE_EXIST ... 152
FILE_COPY ... 153
FILE_DELETE ... 154
FILE_RENAME ... 155
FILE_CREATEDIR ... 156
FILE_DELETEDIR .. 157
FILE_GETSIZE .. 158
FILE_SETSIZE ... 159
FILE_GETTIMECREATION .. 160
FILE_GETTIMEWRITE .. 161
FILE_GETTIMEACCESS... 162
FILE_ISDIRECTORY .. 163
FILE_FINDFIRST ... 164
FILE_FINDNEXT ... 166
FILE_FINDCLOSE ... 167
FILE_AVAILABLESPACE ... 168
FILE_ABSOLUTEPATH.. 169
FILE_OPEN .. 170
FILE_CLOSE ... 171

 ST-Script Guidelines 1.38

 Page 10 of 562

FILE_FLUSH ... 172
FILE_REWIND .. 173
FILE_SEEK .. 174
FILE_ISEOF .. 175
FILE_GETLENGTH .. 176
FILE_GETPOSITION ... 177
FILE_WRITEENCODING ... 178
FILE_READENCODING ... 179
FILE_SETENCODING .. 180
FILE_GETENCODING ... 181
FILE_READBYTE... 182
FILE_READWORD .. 183
FILE_READDWORD ... 184
FILE_READLWORD .. 185
FILE_READBUFFER .. 186
FILE_READSTRING .. 187
FILE_READLINE ... 188
FILE_WRITE ... 189
FILE_GETREADLENGTH ... 190
< variables > .. 191
< constants > .. 192

6. Common - SERIAL .. 193
COM_OPEN .. 193
COM_CLOSE ... 194
COM_FLOW .. 195
COM_ISOPEN .. 196
COM_DATALENGTH.. 197
COM_READBYTE ... 198
COM_READBUFFER .. 199
COM_WRITE ... 200
COM_CLEAR ... 201
COM_GETCTS ... 202
COM_GETDSR ... 203
COM_GETRING ... 204
COM_GETRLSD ... 205
COM_SETRTS .. 206
COM_SETDTR ... 207
COM_SET485 .. 208
< variables > .. 209
< constants > .. 210

7. Common - ETHERNET .. 211
ETH_IP .. 211
ETH_GETIP .. 212
ETH_PING ... 213
ETH_TCPC_OPEN .. 214
ETH_TCPC_CLOSE ... 215
ETH_TCPC_GETIPLOCAL ... 216
ETH_TCPC_GETIPSERVER ... 217
ETH_TCPC_DATALENGTH ... 218
ETH_TCPC_READBYTE .. 219
ETH_TCPC_READBUFFER .. 220
ETH_TCPC_READSTRING .. 221

 ST-Script Guidelines 1.38

 Page 11 of 562

ETH_TCPC_READWSTRING ... 222
ETH_TCPC_WRITE ... 223
ETH_TCPS_OPEN .. 224
ETH_TCPS_CLOSE ... 225
ETH_TCPS_CLIENTSNUMBER .. 226
ETH_TCPS_GETIPLOCAL .. 227
ETH_TCPS_GETIPCLIENT ... 228
ETH_TCPS_DATALENGTH ... 229
ETH_TCPS_READBYTE ... 230
ETH_TCPS_READBUFFER .. 231
ETH_TCPS_READSTRING ... 232
ETH_TCPS_READWSTRING ... 233
ETH_TCPS_WRITE ... 234
ETH_UDP_OPEN ... 235
ETH_UDP_CLOSE .. 236
ETH_UDP_GETIPLOCAL... 237
ETH_UDP_DATALENGTH .. 238
ETH_UDP_READBYTE .. 239
ETH_UDP_READBUFFER ... 240
ETH_UDP_READSTRING.. 241
ETH_UDP_READWSTRING .. 242
ETH_UDP_WRITE .. 243
< variables > .. 244
< constants > .. 246

8. Common - LIBRARIES ... 247
LIBRARY_LOAD ... 247
LIBRARY_RELEASE ... 249
LIBRARY_FXLOAD ... 250
LIBRARY_FXRELEASE ... 253
LIBRARY_FXCALL ... 254
COMLIB_LOAD .. 265
COMLIB_RELEASE ... 266
COMLIB_FXLOAD .. 267
COMLIB_FXRELEASE ... 269
COMLIB_FXCALL ... 270
COMLIB_PROPGET ... 271
COMLIB_PROPSET .. 272
COMVAR_CREATE... 273
COMVAR_DESTROY .. 275
COMVAR_CLEANUP .. 276
COMVAR_COPY .. 277
COMVAR_DIMARRAY ... 278
COMVAR_GETNUMDIM ... 279
COMVAR_GETLBOUND .. 280
COMVAR_GETUBOUND .. 281
COMVAR_SET ... 282
COMVAR_SETELEMENT .. 283
COMVAR_GET... 284
COMVAR_GETELEMENT ... 285
< variables > .. 286
< constants > .. 287

9. Common - PRINT ... 288

 ST-Script Guidelines 1.38

 Page 12 of 562

PDF_OPEN .. 289
PDF_CLOSE ... 291
PDF_NEWPAGE ... 292
PDF_SETCOLOR... 293
PDF_SETLINEWIDTH ... 294
PDF_SETFONT ... 295
PDF_SETFONTNAME ... 297
PDF_SETFONTSIZE .. 298
PDF_SETFONTBOLD .. 299
PDF_SETFONTITALIC ... 300
PDF_SETFONTUNDERLINE .. 301
PDF_DRAWTEXT ... 302
PDF_DRAWLINE .. 303
PDF_DRAWLINEH ... 304
PDF_DRAWLINEV .. 305
PDF_DRAWRECTANGLE .. 306
PDF_DRAWCIRCLE .. 307
PDF_DRAWELLIPSE ... 308
PDF_DRAWIMAGE .. 309
PDF_GETTEXTWIDTH .. 311
REPORT_EXPORT .. 312
REPORT_ENABLESECTION .. 314
< variables > .. 315
< constants > .. 316

10. Common - EXTERNAL .. 317
EW_ON ... 317
EW_OFF .. 318
EW_ENABLE .. 319
EW_DISABLE ... 320
EW_STATE .. 321
EW_EXIST .. 322
MSG_EMAIL .. 323
MSG_EMAILLIST ... 324
MSG_APPNOTIFICATION .. 325
MSG_APPNOTIFICATIONLIST .. 326
MSG_SMS ... 327
MSG_SMSLIST ... 328

11. Runtime - TIMERS .. 329
TIMER_START ... 329
TIMER_STOP ... 330
TIMER_SUSPEND .. 331
TIMER_SETLIMIT ... 332
TIMER_GETLIMIT .. 333
TIMER_SETPROGRESS... 334
TIMER_GETPROGRESS .. 335
TIMER_ISSTARTED .. 336
TIMER_ISSUSPENDED ... 337

12. Runtime - TAGS ... 338
TAG_GETVALUE .. 338
TAG_SETVALUE ... 339
TAG_FLUSHVALUE .. 340
TAG_READVALUE ... 341

 ST-Script Guidelines 1.38

 Page 13 of 562

TAG_WRITEVALUE .. 342
TAG_READELEMENT ... 343
TAG_WRITEELEMENT ... 344
TAG_READBIT ... 345
TAG_WRITEBIT ... 346
TAG_READITEM .. 347
TAG_WRITEITEM .. 349
TAG_GETID ... 351
TAG_GETNAME .. 352
TAG_GETSHAREDID .. 353
TAG_GETIDFROMSHARED .. 354
TAG_GETVALUETYPE .. 355
TAG_GETSTRLENGTH .. 356
TAG_GETARRAYSIZE ... 357
TAG_GETDEVICEID ... 358
TAG_GETAREAID .. 359
TAG_GETADDRESS .. 360
TAG_GETFIELDOFFSET .. 361
TAG_GETFIELDADDRESS ... 362
TAG_GETFIELDVALUE ... 363
TAG_SETFIELDVALUE .. 364
TAG_ASSIGNSTRUCT .. 365
TAG_GETNUMBERALL .. 366
TAG_GETNUMBEREXT .. 367
TAG_GETCLIENTTAGNAME .. 368
TAG_ISOFFLINE ... 369
TAG_ISOFFSCAN ... 370
TAG_SETOFFSCAN .. 371
TAG_SETOFFSCANDEV .. 372
TAG_DEVICESNUMBER ... 373
TAG_DEVICEGETID ... 374
TAG_DEVICEGETNAME ... 375
TAG_AREASNUMBER .. 376
TAG_AREAGETID .. 377
TAG_AREAGETNAME .. 378
TAG_FLUSH ... 379
< constants > .. 380

13. Runtime - ALARMS .. 381
ALARM_ON ... 381
ALARM_OFF .. 382
ALARM_ACKSINGLE .. 383
ALARM_ACKINSTANCES ... 384
ALARM_ACKGROUP .. 385
ALARM_ACKALL .. 386
ALARM_ISON .. 387
ALARM_HISTORYRESET .. 388
ALARM_HISTORYFLUSH .. 389
ALARM_STATSRESET .. 390
ALARM_STATSFLUSH .. 391
ALARM_EXPORT ... 392
ALARM_EXPORTHISTORY ... 393
ALARM_EXPORTSTATS ... 394

 ST-Script Guidelines 1.38

 Page 14 of 562

ALARM_EXPORTCONFIG .. 395
ALARM_PRINT .. 399
ALARM_PRINTHISTORY .. 400
ALARM_PRINTSTATS .. 401
ALARM_GETNUMBER ... 402
ALARM_GETNUMISA .. 403
ALARM_GETNUMEVENTS... 404
ALARM_GETNUMACK... 405
ALARM_GETNUMHISTORY ... 406
ALARM_GETNUMINSTANCES ... 407
ALARM_GETINSTANCEID .. 408
ALARM_GETINFO.. 409
ALARM_GETNAMEFROMKEY ... 410
ALARM_GETIDFROMKEY .. 411
ALARM_GETMSGFROMKEY .. 412
ALARM_GETFIRSTPRJ ... 413
ALARM_GETNEXTPRJ .. 414
ALARM_GETFIRSTON .. 415
ALARM_GETNEXTON .. 416
ALARM_GETFIRSTACTIVE ... 417
ALARM_GETNEXTACTIVE ... 418
ALARM_GETFIRSTHISTORY ... 419
ALARM_GETNEXTHISTORY ... 420
ALARM_GETFIRSTHPACK .. 421
ALARM_GETNEXTHPACK .. 422
< variables > .. 423

14. Runtime - RECIPES ... 427
RECIPE_LOAD.. 427
RECIPE_SAVE .. 428
RECIPE_DOWNLOAD .. 429
RECIPE_UPLOAD ... 430
RECIPE_DOWNLOADBUF .. 431
RECIPE_UPLOADBUF .. 432
RECIPE_TRANSFERBUSY ... 433
RECIPE_TRANSFERWAIT ... 434
RECIPE_DELETE ... 435
RECIPE_RENAME .. 437
RECIPE_PACKARCHIVE .. 438
RECIPE_CLEARBUFFER .. 439
RECIPE_COMPARE .. 440
RECIPE_COMPARESET .. 441
RECIPE_COMPAREFIELD ... 443
RECIPE_EXPORT .. 445
RECIPE_EXPORTFLAT .. 446
RECIPE_IMPORT ... 447
RECIPE_PRINT ... 449
RECIPE_GETCURNAME ... 450
RECIPE_EXIST .. 451
RECIPE_GETNUMBER ... 452
RECIPE_GETRECORDS ... 453
RECIPE_GETINFO .. 454
RECIPE_GETID ... 455

 ST-Script Guidelines 1.38

 Page 15 of 562

RECIPE_GETFIELDSNUMBER ... 456
RECIPE_GETFIELDNAME ... 457
RECIPE_GETFIELDINDEX ... 460
RECIPE_GETCOMPAREINDEX ... 461
RECIPE_GETFIELDVALUE... 464
RECIPE_SETFIELDVALUE ... 465
RECIPE_SETFIELDEXPORT ... 466
RECIPE_GETSTRRECORD ... 467
RECIPE_GETSTRRECORDS ... 469
RECIPE_GETTAGNAME ... 470
< variables > .. 471
< constants > .. 472

15. Runtime - SAMPLES ... 473
DLOG_ENABLE .. 473
DLOG_DISABLE ... 474
DLOG_RESETSAMPLES .. 475
DLOG_ACQUIRESAMPLES ... 476
DLOG_ACQUISITIONBUSY .. 477
DLOG_ACQUISITIONWAIT .. 478
DLOG_APPENDSAMPLES .. 479
DLOG_FLUSH .. 480
DLOG_EXPORT .. 481
DLOG_PRINT ... 482
DLOG_EXPORTBUSY ... 483
DLOG_EXPORTTERMINATE... 484
DLOG_EXPORTWAIT ... 485
DLOG_EXPORTCONFIG ... 486
DLOG_ISENABLED ... 487
DLOG_GETNUMSAMPLES ... 488
DLOG_GETSAMPLE ... 489
DLOG_GETDISCARDINVALID ... 490
DLOG_SETDISCARDINVALID ... 491
< variables > .. 493
< constants > .. 494

16. Runtime - USERS .. 495
USER_ADD .. 496
USER_REMOVE ... 497
USER_SETPASSWORD ... 498
USER_SETVALIDITY ... 499
USER_SETGROUP .. 500
USER_SETSIGNATURE ... 501
USER_SETRFID .. 502
USER_SETLANGUAGE ... 503
USER_SETEMAIL ... 504
USER_SETTELNUMBER ... 505
USER_LOCK ... 506
USER_UNLOCK .. 507
USER_PERMANENTLOCK .. 508
USER_JOINLIST ... 509
USER_LEAVELIST ... 510
USER_RESETLISTS ... 511
USER_GETCURRENTNAME ... 512

 ST-Script Guidelines 1.38

 Page 16 of 562

USER_GETCURRENTGROUP.. 513
USER_GETCURRENTSHOW ... 514
USER_GETCURRENTUSE ... 515
USER_GETGROUP ... 516
USER_GETLEVELSHOW ... 517
USER_GETLEVELUSE ... 518
USER_GETLANGUAGE ... 519
USER_GETEMAIL ... 520
USER_GETTELNUMBER ... 521
USER_GETVALIDITY .. 522
USER_GETCREATION .. 523
USER_GETEXPIRATION ... 524
USER_ISLOCKED .. 525
USER_ISIMPORTED ... 526
USER_HASRFID ... 527
USER_GROUPGETNAME ... 528
USER_GROUPGETID .. 529
USER_GROUPLEVELSHOW ... 530
USER_GROUPLEVELUSE .. 531
USER_FLUSH ... 532
USER_EXPORT... 533
USER_PRINT .. 534
USER_RESET.. 535
USER_IMPORTNETWORK ... 536
USER_EXPORTGROUPMATRIX .. 537
USER_IMPORTGROUPMATRIX ... 538
USER_EXPORTGEOMATRIX... 539
USER_IMPORTGEOMATRIX .. 540
< constants > .. 541

17. Runtime - PIPELINES .. 542
PIPELINE_ENABLE ... 542
PIPELINE_DISABLE .. 543
PIPELINE_WRITE ... 544
PIPELINE_ISENABLED .. 545
PIPELINE_GETID .. 546
PIPELINE_GETNAME ... 547
PIPELINE_GETNUMBER .. 548

18. Runtime - FDA ... 549
AUDIT_ENABLE ... 549
AUDIT_DISABLE .. 550
AUDIT_FLUSH ... 551
AUDIT_EXPORT ... 552
AUDIT_RESET .. 553
AUDIT_PRINT .. 554
AUDIT_ISENABLED .. 555
AUDIT_GETERROR .. 556
AUDIT_GETNUMBER .. 557
AUDIT_READ ... 558
< variables > .. 559
< constants > .. 561

 ST-Script Guidelines 1.38

 Page 17 of 562

1. DOCUMENT SCOPE

Purpose of the present document is to give a complete list of all the functions implemented in the ST scripting
language supported by ESA platforms.
The document will provide a short reference and a list of correspondences between the new ST functions and
the 'old' VBS functions available on EW platform, along with a detailed description of each one.

 ST-Script Guidelines 1.38

 Page 18 of 562

2. FUNCTIONS LIST

The following is the full list of the implemented functions.
Along with the reference itself, the most likely match with a VBS function is indicated.
Not all of the functions are ESA extensions: some of them are simply part of the basic language environment
(gathered in the initial part of the list).
Note that many of the ST functions has no equal in the VBS environment; similarly, some of the VBS functions
might make no sense in ST. The principle goes for both ESA functions and native language functions.

Notations:
- the ST functions with no match in VBS are left as empty [/] cells;
- matching standard VBS functions are specified in [purple];
- matching ESA VBS functions are given in [black];
- unmatching but similar VBS functions could be pointed out as [side notes];
- VBS functions meant for UI access are given in [orange];

these functions will not be implemented in ST as per MKT specifications.

ST function VBS correspondence Description

ST STANDARDS
Mathematics

ADD (A,B,C,…) / (operator only) sum of all the parameters A+B+C+…

SUB (A,B) / (operator only) subtraction A-B

MUL (A,B,C,…) / (operator only) multiplication of all the parameters A*B*C*…

DIV (A,B) / (operator only) division A/B

MOD (A,B) / (operator only) remainder or fractional part of A/B

ABS (A) Abs absolute value of A

SQRT (A) Sqr square root of A

LN (A) Log natural logarithm of A

LOG (A) / base 10 logarithm of A

EXP (A) Exp e**A (where ‘e’ is the natural number)

POW (A,B) / A**B

SIN (A) Sin sine of A

COS (A) Cos cosine of A

TAN (A) Tan tangent of A

ASIN (A) / arc-sine of A

ACOS (A) / arc-cosine of A

ATAN (A) Atn arc-tangent of A

FRACTION (A) / (not standard ST) get the fractional part of A

TRUNC (A) / (similar: Int, Fix) (not standard ST) conv. A to int.; truncate decimals

ROUND (A) Round (not standard ST) conv. A to int.; round decimals

MIN (A,B,C,…) / minimum of A,B,C,…

MAX (A,B,C,…) / maximum of A,B,C,…

LIMIT (N,V,X) / limit the value V between a min N and a max X

SEL (C,F,T) / return F if the condition C is FALSE; T if TRUE

MUX (N,A,B,C,…) / return the Nth (+1) parameter value

RND () Rnd (not standard ST) obtain a pseudo-random value

Bits

SHL (V,B) / shift value V left of B bits

SHR (V,B) / shift value V right of B bits

ROL (V,B) / rotate value V left of B bits

ROR (V,B) / rotate value V right of B bits

AND (A,B,C,…) / (operator only) logical/bitwise AND of all inputs (A,B,C,…)

OR (A,B,C,…) / (operator only) logical/bitwise OR of all inputs (A,B,C,…)

XOR (A,B,C,…) / (operator only) logical/bitwise XOR of all inputs (A,B,C,…)

NOT (A) / (operator only) logical/bitwise NOT of A
Comparison

 ST-Script Guidelines 1.38

 Page 19 of 562

LT (A,B,C,…) / (operator only) compare A<B<C<…

LE (A,B,C,…) / (operator only) compare A≤B≤C≤…

GT (A,B,C,…) / (operator only) compare A>B>C>…

GE (A,B,C,…) / (operator only) compare A≥B≥C≥…

EQ (A,B,C,…) / (operator only) compare A=B=C=… TRUE if all values are equal

NE (A,B,C,…) / (operator only) compare A,B,C,… TRUE if all values are different
String

LEN (S) Len return the length of string S

LEFT (S,L) Left return the left L characters of string S

RIGHT (S,L) Right return the right L characters of string S

MID (S,L,P) Mid return L characters starting at P of string S

CONCAT (S1,S2,S3,…) / return strings S1,S2,S3,… joined together

INSERT (S1,S2,P) / insert string S2 into S1 at position P

DELETE (S,L,P) / delete L characters from position P in string S

REPLACE (S1,S2,L,P) Replace replace L chars from pos P in string S1 with S2

REVERSE (S) StrReverse (not standard ST) reverse a string

SPLIT (S,[C],[L],[P]) Split (not standard ST) split a string in an array of pieces

FIND (S1,S2) InStr find the start of string S2 in string S1

RFIND (S1,S2) InStrRev (not standard ST) find S2 in S1; search from right

LCASE (S) LCase (not standard ST) convert the string S in lower case

UCASE (S) UCase (not standard ST) convert the string S in upper case

TRIM (S,C) Trim (not standard ST) remove chars C around a string

LTRIM (S,C) LTrim (not standard ST) remove chars C on the left

RTRIM (S,C) RTrim (not standard ST) remove chars C on the right

SETLENGTH (S,C,L,R) ESASetStrLen (not standard ST) set S length to L chars; fill with C

HEX (V) Hex (not standard ST) conv. V in a string with hex format

OCT (V) Oct (not standard ST) conv. V in a string with oct format

BIN (V) / (not standard ST) conv. V in a string with bin format

ASC (C) Asc (not standard ST) get the ASCII code of character C

Utility

ISSTRUCTURE (V) / (not standard ST) see if value V is a structure

ISFUNCTION (V) / (not standard ST) see if value V is a function instance

ISARRAY (V) IsArray (not standard ST) see if value V is an array

NUMDIM (V) / (not standard ST) number of dimensions of array V

LBOUND (V) LBound (not standard ST) lower bound of 1st dim. of array V

UBOUND (V) UBound (not standard ST) upper bound of 1st dim. of array V

SIZEOF (V) / (not standard ST) total size, in bytes, of given value

TYPEOF (V) / (not standard ST) name of type of given value

Conversion

DEG_TO_RAD (V) / (not standard ST) convert an angle from degs to rads

RAD_TO_DEG (V) / (not standard ST) convert an angle from rads to degs

BCD_TO_BIN (V) / (not standard ST) convert an unsigned int. from BCD

BIN_TO_BCD (V) / (not standard ST) convert an unsigned int. to BCD

ANY_TO_SINT (V) / convert a value in a specific type

ANY_TO_INT (V) CInt, CSng convert a value in a specific type

ANY_TO_DINT (V) CLng (see: DateToLong) convert a value in a specific type

ANY_TO_LINT (V) / convert a value in a specific type

ANY_TO_USINT (V) / convert a value in a specific type

ANY_TO_UINT (V) / convert a value in a specific type

ANY_TO_UDINT (V) / convert a value in a specific type

ANY_TO_ULINT (V) / convert a value in a specific type

ANY_TO_REAL (V) / convert a value in a specific type

ANY_TO_LREAL (V) CDbl convert a value in a specific type

ANY_TO_TIME (V) / (similar: CDate) convert a value in a specific type

ANY_TO_LTIME (V) / (similar: CDate) convert a value in a specific type

ANY_TO_DATE (V) / (similar: CDate, DateValue) (see:LongToDate) convert a value in a specific type

ANY_TO_TOD (V) / (similar: CDate, TimeValue) convert a value in a specific type

ANY_TO_LTOD (V) / (similar: CDate, DateValue) convert a value in a specific type

ANY_TO_DT (V) / (similar: CDate, DateValue) convert a value in a specific type

ANY_TO_LDT (V) / (similar: CDate, DateValue) convert a value in a specific type

ANY_TO_STRING (V) / (similar: CStr) convert a value in a specific type

ANY_TO_WSTRING (V) CStr convert a value in a specific type

 ST-Script Guidelines 1.38

 Page 20 of 562

ANY_TO_CHAR (V) / (similar: Chr) convert a value in a specific type

ANY_TO_WCHAR (V) / (similar: Chr) convert a value in a specific type

ANY_TO_BOOL (V) CBool convert a value in a specific type

ANY_TO_BYTE (V) CByte convert a value in a specific type

ANY_TO_WORD (V) / convert a value in a specific type

ANY_TO_DWORD (V) / convert a value in a specific type

ANY_TO_LWORD (V) / convert a value in a specific type

SYSTEM
Basics

_TRACE (M) / print the message M on the <stdout>

_REBOOT () / reboot the machine

_SHUTDOWN () / shutdown the machine

RUNAPPLICATION (N,P,M,[O],[E]) / run an application with given command line

KILLAPPLICATION (N) / terminate an external application of given name

RUNSCRIPT (S) / execute a given piece of script code

EXITRUNTIME () / close the runtime application

SLEEP (T) ESASleep sleep for a number of ms

LSLEEP (T) / sleep for a number of ns

ERRORGETMESSAGE (E) GetErrorMsg obtain the description message of a given error

ERRORGETMODULE (E) / obtain the name of the module related to an error

ERRORRESET () / reset the pending error code

FLUSHCONFIG () ESASaveStatus flush the windows registry

FLUSHPERSISTENT () FlushPersistentData flush on disk all the system persistent data

REFRESHIPADDRESSES () RefreshIpAddresses refresh the IP addresses in the system variables

SETRESTAPIPREFIX () / set prefix for managed HTTP API calls

SETRESTAPIRESPONSE () / set a response string for HTTP API calls

SENDRESTAPIREQUEST () / send an HTTP API request as client

GETRESTAPIRESPONSE () / get the server response for the HTTP API sent

SETTIMESYSTEM (U) SetTimeMode set the time system (local/utc) used for outputs

GETTIMESYSTEM () / get the time system (local/utc) used for outputs

GETNUMCLIENTSWEB () / number of clients connected through web server

GETNUMCLIENTSUI () / number of clients connected through web socket

GETNUMCLIENTSNET () / number of clients connected in a network project

LANGUAGEGET () LanguageGet retrieve the current server language

LANGUAGESET (L) LanguageSet set a new language in server

LANGUAGENEXT () LanguageNext set the next language in server

LANGUAGEPREVIOUS () LanguagePrevious set the previous language in server

GETURL (U,F,X,U,P,S,R,W) ESAGetUrlExt retrieve a file from an URL address

GETCLIENTID () / retrieve the ID of the calling client

SETCLIENTDEBUGRIGHTS (I,R) / choose the debugging rights of a client

GETCLIENTDEBUGRIGHTS (I) / retrieve the debugging rights of a client

GETCLIENTDEBUGSTATE (I) / see if a client started a debug in its browser

SETCLIENTOFFSCAN (I,S) / set the offscan state of a client

GETCLIENTOFFSCAN (I) / retrieve the offscan state of a client

SETCLIENTKEYBURST (I,S) / set the key-burst management state of a client

GETCLIENTKEYBURST (I) / get the key-burst management state of a client
UI-related

SAVESCREEN (F) SaveScreen save on file a screenshot of the server screen

BEEP (T,F) ESABeep buzzer beep of given duration and frequency

BEEPON (F) / switch on the buzzer

BEEPOFF () / switch off the buzzer

LIGHTUP () / increase the display brightness

LIGHTDOWN () / decrease the display brightness

LIGHTSET (L) / set the display brightness to a given level

LIGHTGET () / get the display brightness level

LIGHTGETMAX () / get the display maximum brightness level

SHOWTASKBAR (S) / show and hide the taskbar

SETHHLEDSTATE (L,S) / switch on/off a led of a handheld panel
Clock

GETTICKS () ESAClock (similar: Timer) get the current system ticks (in ms)

GETLTICKS () / get the current system ticks (in ns)

 ST-Script Guidelines 1.38

 Page 21 of 562

SETRTC (T) [ANY] / (sim: ESASetDate, --SetTime, --SetDateTime) set a new system date and time (local mode)

SETRTC_UTC (T) [ANY] / set a new system date and time (UTC mode)

GETRTCTOD () / (similar: Time, Now, Timer) get the current system time (local)

GETRTCLTOD () / (similar: Time, Now, Timer) get the current system time (local)

GETRTCDATE () / (similar: Date, Now) get the current system date (local)

GETRTCDT () / (similar: Date, Time, Now) get the current system date and time (local)

GETRTCLDT () / (similar: Date, Time, Now) get the current system date and time (local)

GETRTCTOD_UTC () / get the current system time (UTC)

GETRTCLTOD_UTC () / get the current system time (UTC)

GETRTCDATE_UTC () / get the current system date (UTC)

GETRTCDT_UTC () / get the current system date and time (UTC)

GETRTCLDT_UTC () / get the current system date and time (UTC)

REFRESHRTC () / align runtime clock & info with system rtc

UTC_TO_LOCAL (V) / convert a date/time from UTC to local

LOCAL_TO_UTC (V) / convert a date/time from local to UTC

GETYEAR (D) / (similar: DatePart, Year) extract the year from a date/time

GETMONTH (D) / (similar: DatePart, Month) extract the month from a date/time

GETDAY (D) / (similar: DatePart, Day) extract the day from a date/time

GETWEEKDAY (D) / (similar: DatePart, WeekDay) find the weekday of a given date

GETHOURS (T) / (similar: DatePart, Hour) extract the hours from a date/time

GETMINUTES (T) / (similar: DatePart, Minute) extract the minutes from a date/time

GETSECONDS (T) / (similar: DatePart, Second) extract the seconds from a date/time

GETMSECONDS (T) / (similar: DatePart) extract the milliseconds from a date/time

GETNSECONDS (T) / (similar: DatePart) extract the nanoseconds from a date/time

MAKETOD (H,M,S,m) / (similar: TimeSerial) create a time with given components

MAKELTOD (H,M,S,n) / (similar: TimeSerial) create a time with given components

MAKEDATE (Y,M,D) / (similar: DateSerial) create a date with given components

MAKEDT (Y,M,D,H,m,S) / (similar: TimeSerial, DateSerial) create a date/time with given components

MAKELDT (Y,M,D,H,m,S,n) / (similar: TimeSerial, DateSerial) create a date/time with given components
Variables

RT_PLATFORM / code of the machine platform architecture

RT_WORKMODE / code of runtime modules configuration

RT_SIMULATION / runtime simulation flag

RT_VERSION / string version of the server runtime

RT_VERSION_MAJOR / major component of runtime version

RT_VERSION_MINOR / minor component of runtime version

RT_VERSION_PROGRESS / progress component of runtime version

ST_VERSION / (similar: ScriptEngineXXXVersion, Version) string version of the ST engine implementation

RT_SESSION / unique code of runtime execution session

ERRNO / (similar: errno, Result) result of last executed operation

ERRMSG / description message of error in ERRNO

FXRESULT LastError last error returned by a runtime function

RESTAPIRESPONSE / last response received from a rest api server
UI / client

/ (UI only) ESAMsgBox

/ (UI only) ESANotifyBox

/ (UI only) ScreenSaverEnter

/ (UI only) ScreenSaverKick

COMMON - FILES
Management

FILE_EXIST (N) Exists see if a file with given name exists

FILE_COPY (S,D,O) Copy copy the file S in D

FILE_DELETE (N) Delete delete the file with name N

FILE_RENAME (S,D) Rename rename the file S in D

FILE_CREATEDIR (N) MD create a new directory N

FILE_DELETEDIR (N,R) RD remove the directory N; optionally recursive
Info

FILE_GETSIZE (N) GetFileLen retrieve the size of the file N

FILE_SETSIZE (N,S) SetFileLen set (fill up or truncate) the size of the file N

FILE_GETTIMECREATION (N) / get the creation time of the file N

FILE_GETTIMEWRITE (N) / get the last write time of the file N

 ST-Script Guidelines 1.38

 Page 22 of 562

FILE_GETTIMEACCESS (N) / get the last access time of the file N

FILE_ISDIRECTORY (N) IsDirectory see if the given path/name identifies a directory

FILE_FINDFIRST (P) FindFirst start a file browse session and obtain the 1st file

FILE_FINDNEXT () FindNext obtain a new file for the active browse session

FILE_FINDCLOSE () / close the browse session in progress

FILE_AVAILABLESPACE (P) AvailableSpace retrieve the available space on a storage unit

FILE_ABSOLUTEPATH (N) / transform a relative or extended path
Streams

FILE_OPEN (N,A,C) Open open a file with given name N, access A, mode C

FILE_CLOSE (F) Close close an opened file

FILE_FLUSH (F) Commit flush the file F buffers on disk

FILE_REWIND (F) Rewind reposition the file F pointer to the file start

FILE_SEEK (F,P,S) / set the file F pointer to a given position

FILE_ISEOF (F) IsEOF see if the file F reached its end

FILE_GETLENGTH (F) GetLen get the length of the opened file F

FILE_GETPOSITION (F) / get the current position of the file F pointer

FILE_WRITEENCODING (F,C) / (see SetUnicode) write a unicode or UTF8 marker in a text file

FILE_READENCODING (F) / (see SkipUnicode) read the encoding marker from a text file

FILE_SETENCODING (F,C) / force a new encoding type for a text file

FILE_GETENCODING (F) / retrieve the encoding type of a text file

FILE_READBYTE (F) ReadByte read a single byte from file F

FILE_READWORD (F) / read a single word (2 bytes) from file F

FILE_READDWORD (F) / read a double word (4 bytes) from file F

FILE_READLWORD (F) / read a long word (8 bytes) from file F

FILE_READBUFFER (F,L) / read a number of bytes from file F

FILE_READSTRING (F,L) ReadStr read a string of length L from file F

FILE_READLINE (F,L) ReadLine read a string from file F up to a line terminator

FILE_WRITE (F,V,[S]) WriteByte, WriteStr write anything in file F (bytes, buffers, strings,…)

FILE_GETREADLENGTH (F) / retrieve number of bytes acquired with last read

<SEEK+READSTRING> ReadStrIdx

<SEEK+WRITE> WriteStrIdx
Variables

FILE_NUMBER FileCount number of files currently opened

FILE_AUTOFLUSH FileFlush set to TRUE to make immediate automatic flushes

FILE_FOUNDNAME / returns the name of the last browsed file

FILE_FOUNDSIZE / returns the size of the last browsed file

FILE_FOUNDTIME / returns the last write time of the last browsed file

FILE_FOUNDISDIR / TRUE if the last browsed element is a directory

COMMON - SERIAL
Management

COM_OPEN (C,B,D,P,S) Open open a com channel over a serial port

COM_CLOSE (P) Close close an opened serial port

COM_FLOW (P,A,B,C,D) / set up a serial port flow control

COM_ISOPEN (P) IsOpen see if a serial port is currently open

COM_DATALENGTH (P) IsData see how much data is available on a serial port

COM_READBYTE (P,T) ReadByte read data from a serial port

COM_READBUFFER (P,S,T) / read data from a serial port

COM_WRITE (P,V,[S]) WriteByte, WriteStr write data on a serial port

COM_CLEAR (P) Clear clear the data buffer of a serial port

COM_GETCTS (P) GetCTS read the CTS signal of a serial port

COM_GETDSR (P) GetDSR read the DSR signal of a serial port

COM_GETRING (P) GetRing read the Ring Indicator signal of a serial port

COM_GETRLSD (P) GetRLSD read the RLSD signal of a serial port

COM_SETRTS (P,S) SetRTS, ClrRTS, Escape change the RTS signal of a serial port

COM_SETDTR (P,S) / (see Escape) change the DTR signal of a serial port

COM_SET485 (P,S) Set485Mode change the 485 direction of a serial port
Variables

COM_NUMBER / number of serial ports currently opened

COM_RXLENGTH / number of bytes read from serial port

COM_TXLENGTH / number of bytes written on serial port

COMMON - ETHERNET

 ST-Script Guidelines 1.38

 Page 23 of 562

Generic

ETH_IP (A,[B,C,D]) / prepare an IP address

ETH_GETIP (A) / convert a normalized IP in different forms

ETH_PING (A,T,[N]) / ping an IP address
TCP client

ETH_TCPC_OPEN (A,P,[L]) Open open a socket as TCP client

ETH_TCPC_CLOSE (E) Close close a socket opened as TCP client

ETH_TCPC_GETIPLOCAL (E) GetAddress get the local address of a TCP client

ETH_TCPC_GETIPSERVER (E) GetServerAddress get the address of the connected TCP server

ETH_TCPC_DATALENGTH (E) IsData get the amount of data available for read

ETH_TCPC_READBYTE (E,T) / read data from an ethernet channel

ETH_TCPC_READBUFFER (E,S,T) ReadBuffer read data from an ethernet channel

ETH_TCPC_READSTRING (E,S,T) ReadString read data from an ethernet channel

ETH_TCPC_READWSTRING (E,S,T) / read data from an ethernet channel

ETH_TCPC_WRITE (E,V,[S]) WriteBuffer, WriteString write data over an ethernet channel
TCP server

ETH_TCPS_OPEN (A,P) Open open a socket as TCP client

ETH_TCPS_CLOSE (E,[A,P]) Close, CloseClient close a socket opened as TCP client

ETH_TCPS_CLIENTSNUMBER (E) NumberOfClientsConnected count the number of connected clients

ETH_TCPS_GETIPLOCAL (E) GetAddress get the local address of a TCP server

ETH_TCPS_GETIPCLIENT (E,I) GetClientAddress get the address of a connected TCP client

ETH_TCPS_DATALENGTH (E,[A,P]) IsData, IsDataClient get the amount of data available for read

ETH_TCPS_READBYTE (E,T,[A,P]) / read data from an ethernet channel

ETH_TCPS_READBUFFER (E,S,T,[A,P]) ReadBuffer, ReadBufferClient read data from an ethernet channel

ETH_TCPS_READSTRING ('') ReadString, ReadStringClient read data from an ethernet channel

ETH_TCPS_READWSTRING ('') / read data from an ethernet channel

ETH_TCPS_WRITE (E,V,[S],A,P) WriteBuffer, WriteString write data over an ethernet channel
UDP

ETH_UDP_OPEN (A,P) Open open a socket in UDP mode

ETH_UDP_CLOSE (E) Close close a socket opened in UDP

ETH_UDP_GETIPLOCAL (E) GetAddress get the local address of a UDP socket

ETH_UDP_DATALENGTH (E) IsData get the amount of data available for read

ETH_UDP_READBYTE (E,T) / read data from an ethernet channel

ETH_UDP_READBUFFER (E,S,T) ReadBuffer read data from an ethernet channel

ETH_UDP_READSTRING (E,S,T) ReadString read data from an ethernet channel

ETH_UDP_READWSTRING (E,S,T) / read data from an ethernet channel

ETH_UDP_WRITE (E,V,[S],A,P) WriteBuffer, WriteString write data over an ethernet channel
Variables

ETH_ERROR / error code returned by ethernet functions

ETH_NUMBER / number of ethernet channels locally opened

ETH_RXLENGTH / number of bytes acquired by the last read

ETH_TXLENGTH / number of bytes transmitted by the last write

ETH_IPADDRESS / extended result for partner IP address

ETH_IPPORT / extended result for partner IP port

ETH_IP# / the 4 components of an IP address

COMMON - LIBRARIES
Standard

LIBRARY_LOAD (N) / (similar: CreateObject) load a dynamic library

LIBRARY_RELEASE (L) / (see CreateObject mechanics) release a dynamic library

LIBRARY_FXLOAD (L,N,[T]) / (see CreateObject mechanics) declare a function of a dynamic library

LIBRARY_FXRELEASE (F) / (see CreateObject mechanics) discard a function of a dynamic library

LIBRARY_FXCALL (F,…) / (see CreateObject mechanics) invoke a function of a dynamic library
COM Objects

COMLIB_LOAD (N) CreateObject create an instance of a COM object

COMLIB_RELEASE (I) / (set to Nothing) release a COM object

COMLIB_FXLOAD (L,N,[R],[P..P]) / (native) declare a function of a COM interface

COMLIB_FXRELEASE (I) / (native) discard a function of a COM interface

COMLIB_FXCALL (I,[P..P]) / (native) invoke a function of a COM object

COMLIB_PROPGET (I) / (native) read the value of a COM object property

COMLIB_PROPSET (I,V) / (native) write the value of a COM object property
Variants

COMVAR_CREATE () / (native) create a 'variant' variable to use with COMs

 ST-Script Guidelines 1.38

 Page 24 of 562

COMVAR_DESTROY (I) / (native) destroy am existing 'variant'

COMVAR_CLEANUP (I) / (native) cleanup the value of a 'variant'

COMVAR_COPY (S,D) / (native) copy the value from a 'variant' to another

COMVAR_DIMARRAY (I,F,T,[F,T..]) / (native) define a 'variant' as an array of given dimensions

COMVAR_GETNUMDIM (I) / get the number of dimensions of a COM array

COMVAR_GETLBOUND (I,D) LBound get the lower bound of a COM array dimension

COMVAR_GETUBOUND (I,D) UBound get the upper bound of a COM array dimension

COMVAR_SET (I,T,V) / (native) write a value in a 'variant'

COMVAR_SETELEMENT (I,T,V,X,[..]) / (native) write a value in an element of a 'variant' array

COMVAR_GET (I,T) / (native) read the value of a 'variant'

COMVAR_GETELEMENT (I,T,X,[..]) / (native) read the value of an element of a 'variant' array
Variables

COMLIB_ERRNO / result of last invoked COM function

COMLIB_ERRMSG / description message of error in COMLIB_ERRNO

COMMON - PRINT
Printing

<todo> Start(UserFlag)

<todo> End()

<todo> (print only) Abort()

<todo> NewPage()

<todo> WriteLN(Text)

<todo> WriteRC(Row, Column, Text)

<todo> WriteXY(x, y, Text)

<todo> PrintImage(PathName, x, y, [w], [h])

<todo> SetFont(Name,Sz,[Bld],[Itl],[Uln],[Set])
PDF

PDF_OPEN (F) / start creation of a new PDF document

PDF_CLOSE () / finalize creation of PDF document

PDF_NEWPAGE () / finalize current page and add a new one

PDF_SETCOLOR (C) / set the color valid for all drawings

PDF_SETLINEWIDTH (W) / set the line width valid for all geometric directives

PDF_SETFONT (N,S,B,I,U) / set a new font with all its attributes

PDF_SETFONTNAME (N) / change the font face name

PDF_SETFONTSIZE (S) / change the font size

PDF_SETFONTBOLD (B) / change the font bold attribute

PDF_SETFONTITALIC (I) / change the font italic attribute

PDF_SETFONTUNDERLINE (U) / change the font underline attribute

PDF_DRAWTEXT (X,Y,T) / draw a text in the document

PDF_DRAWLINE (X1,Y1,X2,Y2) / draw a line in the document

PDF_DRAWLINEH (X,Y,L) / draw a horizontal line in the document

PDF_DRAWLINEV (X,Y,L) / draw a vertical line in the document

PDF_DRAWRECTANGLE (X,Y,X,Y,F) / draw a rectangle in the document

PDF_DRAWCIRCLE (X,Y,R,F) / draw a circle in the document

PDF_DRAWELLIPSE (X,Y,X,Y,F) / draw an ellipse in the document

PDF_DRAWIMAGE (X,Y,W,H,F) / draw an image in the document

PDF_GETTEXTWIDTH (T) / retrieve the width of a given text
Reports

REPORT_EXPORT (R,N,U,G,F,T,S,L) / create a whole report in a PDF file

REPORT_ENABLESECTION (C,E) / Enable/disable classes of section of PDF reports
Variables

PDF_PAGEWIDTH PageWidth width of the document pages

PDF_PAGEHEIGHT PageHeight height of the document pages

PDF_FONTHEIGHT FontSize total height of the current font

PDF_FONTASCENT / (see FontSize) height of ascent part of the font

PDF_FONTDESCENT / (see FontSize) height of descent part of the font

/ (doesn't apply) PageRows

/ (doesn't apply) PageColumns

/ (doesn't apply) MarginHor

/ (doesn't apply) MarginVert

COMMON - EXTERNAL
EveryWare

 ST-Script Guidelines 1.38

 Page 25 of 562

EW_ON () EverywareOn start the everyware client

EW_OFF () EverywareOff stop the everyware client

EW_ENABLE () EverywareEnable enable everyware connection and functionality

EW_DISABLE () EverywareDisable disable everyware connection and functionality

EW_STATUS () EverywareStatus get the current everyware working state

EW_EXIST () EverywareExist see if the everyware client is currently running
Messaging

MSG_EMAIL (…) SendMailSingle send an e-mail to given recipients

MSG_EMAILLIST (…) SendMailList send an e-mail to a whole mailing list

MSG_APPNOTIFICATION (…) / send an app notification to given recipients

MSG_APPNOTIFICATIONLIST (…) / send an app notification to a whole mailing list

MSG_SMS (…) SendSmsSingle send an SMS to a given recipients

MSG_SMSLIST (…) SendSmsList send an SMS to a whole mailing list
SoftPlc

<TBD> CoDeSysOn already implemented for PC, specs TBD, Linux TBC

<TBD> CoDeSysOff already implemented for PC, specs TBD, Linux TBC

<TBD> CoDeSysRun already implemented for PC, specs TBD, Linux TBC

<TBD> CoDeSysStop already implemented for PC, specs TBD, Linux TBC

<TBD> CoDeSysExist already implemented for PC, specs TBD, Linux TBC

RUNTIME - TIMERS
Management

TIMER_START (T) Start start a timer counting

TIMER_STOP (T) Stop stop a timer counting

TIMER_SUSPEND (T) Suspend suspend a timer counting
Info

TIMER_SETLIMIT (T,L) SetTimerValue set a new value for the timer counter limit

TIMER_GETLIMIT (T) GetTimerValue obtain the current value of the counter limit

TIMER_SETPROGRESS (T,P) SetProgress set a new value for the timer progress counter

TIMER_GETPROGRESS (T) GetProgress obtain the current value of the progress counter

TIMER_ISSTARTED (T) IsStarted see if a timer is currently counting

TIMER_ISSUSPENDED (T) IsSuspended see if a timer is currently suspended

RUNTIME - TAGS
Acquisitions

TAG_GETVALUE (T) GetCurrentValue, GetCurrentValue64 get the current tag value

TAG_SETVALUE (T,V) / change the current value of a tag

TAG_FLUSHVALUE (T) / send to device the current value of a tag

TAG_READVALUE (T) ReadValue, ReadValue64 read a tag value from device

TAG_WRITEVALUE (T,V) WriteValue, WriteValue64 write a tag value on device

TAG_READELEMENT (T,E) ReadElement, ReadElement64 read a tag-array element from device

TAG_WRITEELEMENT (T,E,V) WriteElement, WriteElement64 write a tag-array element on device

TAG_READBIT (T,B) ReadBit read a tag bit from device

TAG_WRITEBIT (T,B,V) WriteBit write a tag bit on device

TAG_READITEM (…) ReadItem read any memory item from device

TAG_WRITEITEM (…) WriteItem write any memory item on device

TAG_GETFIELDVALUE (T,P) / get the value of a field within a structured tag

TAG_SETFIELDVALUE (T,P,V) / change the value of a field within a structured tag

TAG_ASSIGNSTRUCT (T,S,A) / produce an assignable structure from a tag

TAG_FLUSH () / flush on disk the persistent values of tags
Info

TAG_GETID (N) GetTagId get the tag ID

TAG_GETNAME (T) GetTagName get the tag name

TAG_GETSHAREDID (T) / get the tag shared ID

TAG_GETIDFROMSHARED (T) / get the tag ID

TAG_GETVALUETYPE (T) GetTagValueType get the code of the tag value type

TAG_GETSTRLENGTH (T) GetTagStrLength get the string length, in case of string value types

TAG_GETARRAYSIZE (T) GetTagArraySize get the number of elements of a tag array

TAG_GETDEVICEID (T) GetTagDeviceId get the ID of the tag's device

TAG_GETAREAID (T) GetTagAreaId get the ID of the tag's data area

TAG_GETADDRESS (T,I) GetTagAddress get an address field of the tag

TAG_GETFIELDOFFSET (T,P) GetFieldOffset get the offset of a field within a structured tag

TAG_GETFIELDADDRESS (T,P) GetFieldAddress get the address of a field of a structured tag

 ST-Script Guidelines 1.38

 Page 26 of 562

TAG_GETNUMBERALL () / count the total number of tags

TAG_GETNUMBEREXT () / count the number of external tags

TAG_GETCLIENTTAGNAME (I) / get the name of a client system tag

TAG_ISOFFLINE (T) IsOffline get the offline state of a tag

TAG_ISOFFSCAN (T) / get the offscan state of a tag

TAG_SETOFFSCAN (T,S) SetTagOffscan set the offscan state of a tag

TAG_SETOFFSCANDEV (D,S) SetDeviceOffscan set the offscan state of a device

TAG_DEVICESNUMBER () / get the number of configured devices

TAG_DEVICEGETID (N) GetDeviceId get the ID of a device

TAG_DEVICEGETNAME (D) GetDeviceName get the name of a device

TAG_AREASNUMBER (D) / get the number of a device's data areas

TAG_AREAGETID (D,N) / get the ID of a device's data area

TAG_AREAGETNAME (D,A) / get the name of a device's data area

RUNTIME - ALARMS
Management

ALARM_ON (A,[U,S]) AlarmOn raise an alarm

ALARM_OFF (A,[U,S]) ClearAlarm clear an alarm

ALARM_ACKSINGLE (I,[U,S]) AckAlarm acknowledge a single alarm instance

ALARM_ACKINSTANCES (A,[U,S]) AckInstances acknowledge all the instances of a given alarm

ALARM_ACKGROUP (G,[U,S]) AckGroup acknowledge all the alarms of a given group

ALARM_ACKALL ([U,S]) AckGlobal acknowledge all the existing alarm instances

ALARM_ISON (A) IsAlarmOn see if an alarm condition is currently set

ALARM_HISTORYRESET () HistoryDelete reset the history records

ALARM_HISTORYFLUSH () HistoryFlush flush on persistent storage the alarms history

ALARM_STATSRESET () StatsDelete reset the alarms statistical information

ALARM_STATSFLUSH () StatsFlush flush on persistent storage the alarms statistics

ALARM_EXPORT (F) AlarmsExport export on file the active alarms

ALARM_EXPORTHISTORY (F) HistoryExport export on file the historical records

ALARM_EXPORTSTATS (F) StatsExport export on file the statistical information

ALARM_EXPORTCONFIG (A,H,S) / change the export fields keys of alarms

ALARM_PRINT () AlarmsPrint print the active alarms

ALARM_PRINTHISTORY () HistoryPrint print the historical records

ALARM_PRINTSTATS () StatsPrint print the statistical information
Info

ALARM_GETNUMBER ([P]) / get the number of active instances

ALARM_GETNUMISA ([P]) / get the number of active ISA instances

ALARM_GETNUMEVENTS ([P]) / get the number of active simple events

ALARM_GETNUMACK ([P]) / get the number of ISA still waiting for ACK

ALARM_GETNUMHISTORY () / get the number of records in history

ALARM_GETNUMINSTANCES (A) CountAlarmInstances get the number of instances of a given alarm

ALARM_GETINSTANCEID (A,I) GetInstanceId get the ID of a given alarm instance

ALARM_GETINFO ([A],[I]) / get information parameters of a given alarm

ALARM_GETNAMEFROMKEY (K) / get the name of an alarm with given key

ALARM_GETIDFROMKEY (K) / get the ID of an alarm with given key

ALARM_GETMSGFROMKEY (K) / get the message of an alarm with given key

ALARM_GETFIRSTPRJ () / get info about the first project alarm and stats

ALARM_GETNEXTPRJ (I) / get info about the project alarms and stats

ALARM_GETFIRSTON () / get info about the first project alarm in on state

ALARM_GETNEXTON (I) / get info about the project alarms in on state

ALARM_GETFIRSTACTIVE () / get info about the first active alarm

ALARM_GETNEXTACTIVE (I) / get info about the active alarms

ALARM_GETFIRSTHISTORY () / get info about the first history record

ALARM_GETNEXTHISTORY (I) / get info about the history records

ALARM_GETFIRSTHPACK () / get info about the first packed history record

ALARM_GETNEXTHPACK (I) / get info about the packed history records
Variables

ALARM_NAME / name of the analyzed alarm

ALARM_ID / ID of the analyzed alarm

ALARM_KEY / custom key of the analyzed alarm

ALARM_MESSAGE / description message of the analyzed alarm

ALARM_RECNAME / information filled by alarms browse loops

 ST-Script Guidelines 1.38

 Page 27 of 562

ALARM_RECKEY / information filled by alarms browse loops

ALARM_RECID / information filled by alarms browse loops

ALARM_RECSTATE / information filled by alarms browse loops

ALARM_RECNUMINSTANCES / information filled by alarms browse loops

ALARM_RECONNUMBER / information filled by alarms browse loops

ALARM_RECONDURATION / information filled by alarms browse loops

ALARM_RECINSTANCEID / information filled by alarms browse loops

ALARM_RECMESSAGE / information filled by alarms browse loops

ALARM_RECONTIME / information filled by alarms browse loops

ALARM_RECONUSER / information filled by alarms browse loops

ALARM_RECALTTIME / information filled by alarms browse loops

ALARM_RECALTUSER / information filled by alarms browse loops

ALARM_RECEVENTTYPE / information filled by alarms browse loops

ALARM_RECEVENTTIME / information filled by alarms browse loops

ALARM_RECEVENTUSER / information filled by alarms browse loops
UI / client

/ (client only) AlarmsExportLocal

/ (client only) HistoryExportLocal

/ (client only) StatsExportLocal

/ (client only) AlarmsPrintLocal

/ (client only) HistoryPrintLocal

/ (client only) StatsPrintLocal

RUNTIME - RECIPES
Transfers

RECIPE_LOAD (S,R,[L]) LoadRecipe load a recipe from archive to buffer

RECIPE_SAVE (S,[R],[L]) SaveRecipe, SaveRecipeAs save a recipe from buffer to archive

RECIPE_DOWNLOAD (S,R,[Y],[L]) RecipeDownload transfer a recipe from archive to device

RECIPE_UPLOAD (S,[R],[Y],[L]) RecipeUpload transfer a recipe from device to archive

RECIPE_DOWNLOADBUF (S,[Y],[L]) RecipeBufferDownload transfer a recipe from buffer to device

RECIPE_UPLOADBUF (S,[Y],[L]) RecipeBufferUpload transfer a recipe from device to buffer

RECIPE_TRANSFERBUSY () Busy (variable) see if a recipes transfer is in progress

RECIPE_TRANSFERWAIT () / wait for termination of a transfer in progress
Management

RECIPE_DELETE (S,[R],[L]) DeleteRecipe, DeleteAllRecipes delete one or all the recipes of a structure

RECIPE_RENAME (S,O,N,[L]) RenameRecipe rename a given recipe

RECIPE_PACKARCHIVE (S) PackArchive compact the archive of a given structure

RECIPE_CLEARBUFFER (S) ClearTagBuffer clear the buffer tags of a given structure

RECIPE_COMPARE (S,A,B) RecipeCompare compare two recipes of a given structure

RECIPE_COMPARESET (S,N,D,R,[T]) / compare a recipe in archive with a tags set

RECIPE_COMPAREFIELD (S,R,F,[M]) / compare a field in archive with its device tag

RECIPE_EXPORT (F,[S],[L]) RecipeExport, RecipeExportAll export the recipes of one or all the structures

RECIPE_EXPORTFLAT (F,S,[L]) RecipeExportCsv export the recipes of one or all the structures

RECIPE_IMPORT (F,[S],[L]) RecipeImport, RecipeImportAll import the recipes of one or all the structures

RECIPE_PRINT ([S]) RecipePrint, RecipePrintAll print the recipes of one or all the structures
Info

RECIPE_GETCURNAME (S) / get the name currently in the buffer of a structure

RECIPE_EXIST (S,R) RecipeExists see if a given recipe exists in the archive

RECIPE_GETNUMBER (S) GetRecipeCount count the valid recipes in a structure archive

RECIPE_GETRECORDS (S) GetRecipeRecords count all the records in a structure archive

RECIPE_GETINFO (S,I) GetRecipeName get the name of a recipe of known ID

RECIPE_GETID (S,R) / get the ID of a recipe of known name

RECIPE_GETFIELDSNUMBER (S) / get the number of fields in structure

RECIPE_GETFIELDNAME (S,F,[M]) / get the name of a recipe field

RECIPE_GETFIELDINDEX (S,F) / get the index of a recipe field

RECIPE_GETCOMPAREINDEX (…) / get the index of a field comparison flag

RECIPE_GETFIELDVALUE (S,R,F) / get the value of a recipe field from archive

RECIPE_SETFIELDVALUE (S,R,F,V) / set the value of a recipe field in archive

RECIPE_GETSTRRECORD (S,R,T) / get a whole recipe record from archive

RECIPE_GETSTRRECORDS (S,T,Z,P[...]) / get a set of recipe records from archive

RECIPE_GETTAGNAME (S,F,D) GetTagName get the name of a tag associated to a recipe field
Variables

RECIPE_IMPORTEDNEW ImportedNew count the recipes added by a file import

 ST-Script Guidelines 1.38

 Page 28 of 562

RECIPE_IMPORTEDOLD ImportedOld count the recipes replaced by a file import

RECIPE_NAME / replicates the name of the retrieved recipe

RECIPE_ID / replicates the ID of the retrieved recipe

RECIPE_COMMENT / comment associated to the retrieved recipe

RECIPE_TIME / last save time of the retrieved recipe
UI / client

/ (UI only) RecipeLoadBox

/ (UI only) RecipeSaveBox

/ (UI only) RecipeSaveAsBox

/ (UI only) RecipeDeleteBox

/ (UI only) RecipeRenameBox

/ (UI only) RecipeDownloadBox

/ (UI only) RecipeExport (box)

/ (UI only) RecipeImport (box)

/ (client only) RecipeExportLocal

/ (client only) RecipeExportAllLocal

/ (client only) RecipePrintLocal

/ (client only) RecipePrintAllLocal

RUNTIME - SAMPLES
Management

DLOG_ENABLE (B) Enable enable activity of a datalog buffer

DLOG_DISABLE (B) Disable disable activity of a datalog buffer

DLOG_RESETSAMPLES (B) ResetSamples clean up the content of a datalog buffer

DLOG_ACQUIRESAMPLES (B) AcquireSample acquire a set of samples for a datalog buffer

DLOG_ACQUISITIONBUSY (B) / see if there is an acquisition in progress

DLOG_ACQUISITIONWAIT (B) / wait for an acquisition to complete

DLOG_APPENDSAMPLES (B,…) / add a new set of samples to the buffer

DLOG_FLUSH ([B]) FlushPersistentData flush a samples buffer on persistent storage

DLOG_EXPORT (F,B) ExportSamples export the samples of a datalog buffer

DLOG_PRINT (B) SamplesPrint print the samples of a datalog buffer

DLOG_EXPORTBUSY ([B]) ExportInProgress see if there is an export in progress

DLOG_EXPORTTERMINATE ([B]) TerminateExport terminate the export of a datalog buffer

DLOG_EXPORTWAIT ([B]) WaitForExport wait for a datalog buffer export termination

DLOG_EXPORTCONFIG (B,K) / change the export fields key of a datalog buffer
Info

DLOG_ISENABLED (B) / see if a buffer activity is currently enabled

DLOG_GETNUMSAMPLES (B) / get the number of samples stored in a buffer

DLOG_GETSAMPLE (B,S,I) / retrieve the value of a sample

DLOG_GETDISCARDINVALID (B) / get the current invalid samples management

DLOG_SETDISCARDINVALID (B,S) / set a behaviour for invalid samples management
Variables

DLOG_SAMPLEVALUENUM / get the value of the last sample query

DLOG_SAMPLEVALUESTR / get the value of the last sample query

DLOG_SAMPLEISSTRING / see if the value of the last sample is a string

DLOG_SAMPLETIME / get the timestamp of the last sample query

DLOG_SAMPLEQUALITY / get the quality of the last sample query
UI / client

/ (client only) ExportSamplesLocal

/ (client only) ExportInProgressLocal

/ (client only) WaitForExportLocal

/ (client only) TerminateExportLocal

/ (client only) ImportSamplesLocal

/ (client only) SamplesPrintLocal

RUNTIME - USERS
Management

USER_ADD (U,G,P,M,[V],[L],[E],[T],[R]) Add add a new user with given properties

USER_REMOVE (U) Remove remove an existing user

USER_SETPASSWORD (U,P,M) ChangePassword change the password of a user

USER_SETVALIDITY (U,V) ChangePasswordValidity change the validity of a password

USER_SETGROUP (U,G) ChangeGroup change the group of a user

USER_SETSIGNATURE (U,S) / change the electronic signature string of a user

 ST-Script Guidelines 1.38

 Page 29 of 562

USER_SETRFID (U,R) / change the RFID code string of a user

USER_SETLANGUAGE (U,L) ChangeLanguage change the default language of a user

USER_SETEMAIL (U,E) ChangeEmail change the e-mail address of a user

USER_SETTELNUMBER (U,T) ChangeTelNumber change the telephone number of a user

USER_LOCK (U) UserLock lock a user

USER_UNLOCK (U) UserUnlock unlock a user

USER_PERMANENTLOCK (U) / permanently lock a user

USER_JOINLIST (U,L,T) UserJoinList add a user to a mailing list

USER_LEAVELIST (U,L) UserLeaveList remove a user from a mailing list

USER_RESETLISTS (U) UserResetLists remove a user from all of its mailing lists
Info

USER_GETCURRENTNAME () GetCurrentUserName get the name of the current server user

USER_GETCURRENTGROUP () GetCurrentGroup get the group of the current server user

USER_GETCURRENTSHOW () GetCurrentVisibility get the visibility level of the server user

USER_GETCURRENTUSE () GetCurrentInteractivity get the interactivity level of the server user

USER_GETGROUP (U) GetUserGroup get the group of a user

USER_GETLEVELSHOW (U) GetUserVisibility get the visibility level of a user

USER_GETLEVELUSE (U) GetUserInteractivity get the interactivity level of a user

USER_GETLANGUAGE (U) GetUserLanguage get the default language of a user

USER_GETEMAIL (U) GetUserEmail get the e-mail address of a user

USER_GETTELNUMBER (U) GetUserTelNumber get the telephone number of a user

USER_GETVALIDITY (U) GetUserPasswordValidity get the validity time of a user password

USER_GETCREATION (U) / get the creation date of a user password

USER_GETEXPIRATION (U) / get the expiration date of a user password

USER_ISLOCKED (U) / see if a user is locked

USER_ISIMPORTED (U) / see if a user was imported from an AD

USER_HASRFID (U) / see if a user supports RFID authentication

USER_GROUPGETNAME (I) / get the name of a users' group

USER_GROUPGETID (G) / get the ID of a users' group

USER_GROUPLEVELSHOW (G) / get the visibility level of a users' group

USER_GROUPLEVELUSE (G) / get the interactivity level of a users' group
Utilities

USER_FLUSH () UsersFlush flush the log of the users' events

USER_EXPORT (N,M,[F],[T]) LogExport export the log of the users' events

USER_PRINT ([F],[T]) UsersPrint print the log of the users' events

USER_RESET () / reset users and passwords to project defaults

USER_IMPORTNETWORK (U,W,…) ImportNetworkUsers import users from an Active Directory

USER_EXPORTGROUPMATRIX () / export group permissions matrix

USER_IMPORTGROUPMATRIX () / import group permissions matrix

USER_EXPORTGEOMATRIX () / export geographic permissions matrix

USER_IMPORTGEOMATRIX () / import geographic permissions matrix
UI / client

/ (client only) Login

/ (client only) Logout

/ (UI only) LoginBox

/ (UI only) LoginPasswordBox

/ (UI only) AddBox

/ (UI only) RemoveBox

/ (UI only) ChangeInfoBox

/ (UI only) SendMailBox

/ (UI only) SendSmsBox

/ (client only) LogExportLocal

/ (client only) UsersPrintLocal

RUNTIME - PIPELINES
Management

PIPELINE_ENABLE (P) Enable enable the auto activity of the pipeline

PIPELINE_DISABLE (P) Disable disable the auto activity of the pipeline

PIPELINE_WRITE (P) Execute force the execution of the pipeline read/write
Info

PIPELINE_ISENABLED (P) IsEnabled see if the pipeline automatic activity is enabled

PIPELINE_GETID (N) / get the ID of the pipeline with given name

PIPELINE_GETNAME (P) / get the name of the pipeline with given ID

 ST-Script Guidelines 1.38

 Page 30 of 562

PIPELINE_GETNUMBER () / get the number of existing pipelines

RUNTIME - FDA AUDITOR
Management

AUDIT_ENABLE () EventsTracingEnable enable the FDA auditor logging

AUDIT_DISABLE () EventsTracingDisable disable the FDA auditor logging

AUDIT_FLUSH () EventsTracingFlush flush on disk the records logged by FDA auditor

AUDIT_EXPORT (N,M,S,[F],[T]) EventsTracingExport, /Part export (all or part of) the logged records

AUDIT_RESET (N,M,S) EventsTracingReset export and reset the logged records and errors

AUDIT_PRINT ([F],[T]) EventsPrint print (all or part of) the logged records
Info

AUDIT_ISENABLED () / see if the FDA auditor logging is enabled

AUDIT_GETERROR () / retrieve the code of an auditor blocking error

AUDIT_GETNUMBER () / get the number of the records in the log

AUDIT_READ (I) / read a record from the FDA auditor logs
Variables

AUDIT_READMODULE / module related to the read record

AUDIT_READACTION / action related to the read record

AUDIT_READTIME / logging time of the read record

AUDIT_READUSER / name of user related to the read record

AUDIT_READCLIENT / name of client related to the read record

AUDIT_READOBJECT / runtime object related to the read record

AUDIT_READCOMMENT / comment appended to the read record

AUDIT_READREASON / reason entered by user at runtime

AUDIT_READSIGNATURE / electronic signature entered by user

AUDIT_READTAGNAME / name of involved tag (for tag events)

AUDIT_READTAGADD / symbolic address of involved tag (for tag events)

AUDIT_READOLDVALUE / old tag value (for tag editing)

AUDIT_READNEWVALUE / new tag value (for tag editing)
UI / client

/ (client only) EventsTracingExportLocal

/ (client only) EventsTracingExportPartLocal

/ (client only) EventsTracingResetLocal

/ (client only) EventsPrintLocal

UI MODULES
Page manager

/ (UI only) ShowPage

/ (UI only) SetPageColor

/ (UI only) GetPageColor

/ (UI only) GetPageWidth

/ (UI only) GetPageHeight

/ (UI only) ShowPageNext

/ (UI only) ShowPageNextFull

/ (UI only) ShowPageNextPopup

/ (UI only) ShowPagePrevious

/ (UI only) ShowPagePreviousFull

/ (UI only) ShowPagePreviousPopup

/ (UI only) ShowPageLast

/ (UI only) ClosePopUp

/ (UI only) ClosePopUpTop

/ (UI only) ClosePopUpAll

/ (UI only) ShowHelpPage

/ (UI only) ShowHelpFullscreen

/ (UI only) ShowHelpPopup

/ (UI only) CloseHelpPage

/ (UI only) CloseHelpPages

/ (UI only) DisableInteraction

/ (UI only) EnableInteraction

/ (UI only) IsPageOpen

/ (UI only) GetPageName

/ (UI only) GetPageId

/ (UI only) GetFullScreenName

 ST-Script Guidelines 1.38

 Page 31 of 562

/ (UI only) GetFullScreenId

/ (UI only) GetNumPopups

/ (UI only) GetPopupName

/ (UI only) GetPopupId

/ (UI only) ShowRoadMap

/ (UI only) ShowPopupMap

/ (UI only) ShowSequenceRoll

/ (UI only) ShowDateTimeBox

/ (UI only) ShowResourceMonitorBox

/ (UI only) ShowCalculatorBox

/ (UI only) MeasuresNext

/ (UI only) MeasuresPrevious

/ (UI only) MeasuresSet

/ (UI only) MeasuresGet
Controls

/ (UI only) SetRangeColor

/ (UI only) GetRangeColor

/ (UI only) SetRangeValue

/ (UI only) GetRangeValue

/ (UI only) SetMoveState

/ (UI only) GetMoveStateLeft

/ (UI only) GetMoveStateTop

/ (UI only) GetMoveStateAngle

/ (UI only) GetMoveStateTime

/ (UI only) SetImage

/ (UI only) GetImage

/ (UI only) SetText

/ (UI only) SetTextKey

/ (UI only) GetText

/ (UI only) SetPointCoord

/ (UI only) SetTrendTraceMinX

/ (UI only) SetTrendTraceMaxX

/ (UI only) SetTrendTraceMinY

/ (UI only) SetTrendTraceMaxY

/ (UI only) GetTrendMinX

/ (UI only) GetTrendMaxX

/ (UI only) GetTrendMinY

/ (UI only) GetTrendMaxY

/ (UI only) TraceImportLocal
Variables

/ (UI only) < all control-related properties >

/ (UI only) < all UI-related variables >

 ST-Script Guidelines 1.38

 Page 32 of 562

3. STANDARD ST LANGUAGE

Mathematical functions

ADD

Calculates the sum of all the given parameters.

RESULT = ADD (V1, V2 [, … , VN])

Same as:
V1 + V2 + … + VN

input

V# : ANY_PLAIN terms of the addition;
 several different types are allowed: the limitations are the same as the "+"

operator (see [1] for details);
 similarly to the "+" operator, also, adding strings will result in their

concatenation

output

RESULT : ANY_PLAIN the type of the result depends on the types of the involved operands;
 as above, the same rules of the "+" operator apply (see [1] for details)

SUB

Calculates the difference between V1 and V2.

RESULT = SUB (V1, V2)

Same as:
V1 - V2

input

V1,V2 : ANY_PLAIN terms of the subtraction;
 several different types are allowed: the limitations are the same as the "-"

operator (see [1] for details);

output

RESULT : ANY_PLAIN the type of the result depends on the types of the involved operands;
 as above, the same rules of the "-" operator apply (see [1] for details)

MUL

Calculates the multiplication result of all the given parameters.

RESULT = MUL (V1, V2 [, … , VN])

Same as:
V1 * V2 * … * VN

 ST-Script Guidelines 1.38

 Page 33 of 562

input

V# : ANY_PLAIN factors of the multiplication;
 several different types are allowed: the limitations are the same as the "*"

operator (see [1] for details)

output

RESULT : ANY_PLAIN the type of the result depends on the types of the involved operands;
 as above, the same rules of the "*" operator apply (see [1] for details)

DIV

Calculates the division between V1 and V2.

RESULT = DIV (V1, V2)

Same as:
V1 / V2

input

V1,V2 : ANY_PLAIN dividend and divisor;
 several different types are allowed: the limitations are the same as the "/"

operator (see [1] for details);

output

RESULT : ANY_PLAIN the type of the result depends on the types of the involved operands;
 as above, the same rules of the "/" operator apply (see [1] for details)

MOD

Calculates the remainder of the division between V1 and V2.

RESULT = MOD (V1, V2)

Same as:
V1 % V2 (or V1 MOD V2)

input

V1,V2 : ANY_INT dividend and divisor;
 several different types are allowed: the limitations are the same as the "MOD"

operator (see [1] for details);

output

RESULT : ANY_INT the type of the result depends on the types of the involved operands;
 as above, the same rules of the "MOD" operator apply (see [1] for details)

ABS

Calculates the absolute value of the given parameter.

RESULT = ABS (V)

 ST-Script Guidelines 1.38

 Page 34 of 562

input

V : ANY_NUM source value

output

RESULT : ANY_NUM absolute value of V : |V|
 in case of signed integers, the result is a higher order signed integer

SQRT

Calculates the square root of the given parameter.

RESULT = SQRT (RADICAND)

input

RADICAND : ANY_NUM the root radicand;
 function domain : RADICAND ≥ 0

output

RESULT : LREAL square root of RADICAND : √RADICAND

LN

Calculates the natural logarithm of the given parameter.

RESULT = LN (V)

input

V : ANY_NUM source value;
 function domain : V > 0

output

RESULT : LREAL natural logarithm (base e) of V : loge(V)

LOG

Calculates the base 10 logarithm of the given parameter.

RESULT = LOG (V)

input

V : ANY_NUM source value;
 function domain : V > 0

output

RESULT : LREAL base-10 logarithm of V : log10(V)

EXP

Calculates the value of e raised to a given power (where ‘e’ is the Euler's number).

RESULT = EXP (EXPONENT)

 ST-Script Guidelines 1.38

 Page 35 of 562

Same as:
e ** EXPONENT

input

EXPONENT : ANY_NUM exponent of the exponentiation

output

RESULT : LREAL exponentiation result : eEXPONENT

POW

Calculates the value of a given base raised to a given power.

RESULT = POW (BASE, EXPONENT)

Same as:
BASE ** EXPONENT

input

BASE : ANY_NUM base of the exponentiation
EXPONENT : ANY_NUM exponent of the exponentiation

output

RESULT : LREAL exponentiation result : BASEEXPONENT

SIN

Calculates the sine of a given angle.

RESULT = SIN (ANGLE)

input

ANGLE : ANY_NUM the angle, in radians

output

RESULT : LREAL sine result

COS

Calculates the cosine of a given angle.

RESULT = COS (ANGLE)

input

ANGLE : ANY_NUM the angle, in radians

output

RESULT : LREAL cosine result

TAN

Calculates the tangent of a given angle.

 ST-Script Guidelines 1.38

 Page 36 of 562

RESULT = TAN (ANGLE)

input

ANGLE : ANY_NUM the angle, in radians

output

RESULT : LREAL tangent result

ASIN

Calculates the arc-sine of a given value.

RESULT = ASIN (V)

input

V : ANY_NUM source value; ideally a 'sine' value;
 function domain : -1 ≤ V ≤ 1

output

RESULT : LREAL arc-sine result

ACOS

Calculates the arc-cosine of a given value.

RESULT = ACOS (V)

input

V : ANY_NUM source value; ideally a 'cosine' value;
 function domain : -1 ≤ V ≤ 1

output

RESULT : LREAL arc-cosine result

ATAN

Calculates the arc-tangent of a given value.

RESULT = ATAN (V)

input

V : ANY_NUM source value; ideally a 'tangent' value

output

RESULT : LREAL arc-tangent result

FRACTION

Retrieves the fractional part of a given (floating-point) value.

 ST-Script Guidelines 1.38

 Page 37 of 562

RESULT = FRACTION (V)

Similar to (range aside):
V - ANY_TO_LINT(V)

input

V : ANY_REAL source value

output

RESULT : ANY_REAL fractional part of V;
 replicates the type of the parameter

TRUNC

Converts a floating-point value in an integer; decimals are truncated.

RESULT = TRUNC (V)

Works as a plain ANY_TO_LINT (in case of floating-point parameter).

input

V : ANY_REAL source value;
 the range is expected to fit in the result LINT type

output

RESULT : LINT the truncated value

ROUND

Converts a floating-point value in an integer; decimals are rounded.

RESULT = ROUND (V)

input

V : ANY_REAL source value;
 the range is expected to fit in the result LINT type

output

RESULT : LINT the rounded value

MIN

Retrieves the minimum among all the given parameters.

RESULT = MIN (V1, V2 [, … , VN])

input

V# : ANY_PLAIN source values to be checked;
 several different types are allowed and can be mixed up: the limitations are

the same as the "<=" operator (see [1] for details)

output

RESULT : ANY_PLAIN the minimum among all the submitted values;

 ST-Script Guidelines 1.38

 Page 38 of 562

 returns the identified minimum with its exact value and type

MAX

Retrieves the maximum among all the given parameters.

RESULT = MAX (V1, V2 [, … , VN])

input

V# : ANY_PLAIN source values to be checked;
 several different types are allowed and can be mixed up: the limitations are

the same as the ">=" operator (see [1] for details)

output

RESULT : ANY_PLAIN the maximum among all the submitted values;
 returns the identified maximum with its exact value and type

LIMIT

Limits a given value between a minimum and a maximum.

RESULT = LIMIT (MINIMUM, VALUE, MAXIMUM)

Similar to the complex C combination:
((VALUE < MINIMUM) ? MINIMUM : ((VALUE > MAXIMUM) ? MAXIMUM : VALUE))

input

MINIMUM : ANY_PLAIN the minimum allowed value
VALUE : ANY_PLAIN the value to be limited
MAXIMUM : ANY_PLAIN the maximum allowed value
 several different types are allowed and can be mixed up: for the relations

between the three parameters, the limitations are the same as the "<" and
">" operators (see [1] for details)

output

RESULT : ANY_PLAIN the limited value (either a copy of MINIMUM, MAXIMUM or VALUE);
 the returned type as well replicates that of the source parameter

SEL

Returns one of two parameters, according to the value of a given condition.

RESULT = SEL (CONDITION, IFFALSE, IFTRUE)

Similar to the C ternary operator:
((CONDITION) ? IFTRUE : IFFALSE)

input

CONDITION : BOOL a boolean condition used to select among the other two parameters
IFFALSE : ANY the value returned if the CONDITION value is FALSE
IFTRUE : ANY the value returned if the CONDITION value is TRUE

output

 ST-Script Guidelines 1.38

 Page 39 of 562

RESULT : ANY the value selected by the condition (either a copy of IFFALSE or IFTRUE);
 the returned type as well replicates that of the source parameter

MUX

Returns one of the given parameters, according to the value of a selector.

RESULT = MUX (SELECTOR, V1, V2 [, … , VN])

Similar to the complex C combination:
((SELECTOR == 1) ? V1 : ((SELECTOR == 2) ? V2 : ((SELECTOR == 3) ? V3 : (…))))
In other words, the function returns the "SELECTOR-th" (+1) parameter value.

input

SELECTOR : ANY_INT an integer value used to select one of the other parameters;
 used as a base-1 index of the selectable parameters;
 must be in the range : 1 ≤ SELECTOR ≤ N
 where N is the number of V# parameters
V# : ANY list of selectable values

output

RESULT : ANY the value selected by the SELECTOR (a copy of one of the V# parameters);
 the returned type as well replicates that of the source parameter

RND

Obtains a pseudo-random value.

RESULT = RND ()

output

RESULT : LREAL the generated pseudo-random value;
 will be in the range : 0 ≤ RESULT ≤ 1

 ST-Script Guidelines 1.38

 Page 40 of 562

Bits functions

SHL

Shifts a given (bitstring) value to the left of a number of bits.

RESULT = SHL (V, BITS)

Example:
SHL(ANY_TO_BYTE(2#11001100)) = 2#10011000

input

V : ANY_BIT the bitstring value to be shifted;
 "to the left" means toward higher bits;
 the declared family type is ANY_BIT but BOOLs are actually not allowed
BITS : ANY_INT the number of bits of the shift

output

RESULT : ANY_BIT the shifted bitstring value;
 replicates the type of the input value;
 overflowed bits are lost

SHR

Shifts a given (bitstring) value to the right of a number of bits.

RESULT = SHR (V, BITS)

Example:
SHR(ANY_TO_BYTE(2#10011001)) = 2#1001100

input

V : ANY_BIT the bitstring value to be shifted;
 "to the right" means toward lower bits;
 the declared family type is ANY_BIT but BOOLs are actually not allowed
BITS : ANY_INT the number of bits of the shift

output

RESULT : ANY_BIT the shifted bitstring value;
 replicates the type of the input value;
 overflowed bits are lost

ROL

Shifts (rotates) a given (bitstring) value to the left of a number of bits.

RESULT = ROL (V, BITS)

Example:
ROL(ANY_TO_BYTE(2#11001100)) = 2#10011001

input

 ST-Script Guidelines 1.38

 Page 41 of 562

V : ANY_BIT the bitstring value to be rotated;
 "to the left" means toward higher bits;
 the declared family type is ANY_BIT but BOOLs are actually not allowed
BITS : ANY_INT the number of bits of the shift

output

RESULT : ANY_BIT the rotated bitstring value;
 replicates the type of the input value;
 overflowed bits are rolled around and placed in the lowest bits of the result

ROR

Shifts (rotates) a given (bitstring) value to the right of a number of bits.

RESULT = ROR (V, BITS)

Example:
ROR(ANY_TO_BYTE(2#10011001)) = 2#11001100

input

V : ANY_BIT the bitstring value to be rotated;
 "to the right" means toward lower bits;
 the declared family type is ANY_BIT but BOOLs are actually not allowed
BITS : ANY_INT the number of bits of the shift

output

RESULT : ANY_BIT the rotated bitstring value;
 replicates the type of the input value;
 overflowed bits are rolled around and placed in the highest bits of the result

AND

Applies a bitwise AND to all the given operands.

RESULT = AND (V1, V2 [, … , VN])

Same as:
V1 & V2 & … & VN (or V1 AND V2 AND … AND VN)

input

V# : ANY_PLAIN the values to be combined in AND;
 the limitations are the same as the "AND" (&) operator (see [1] for details)

 - only bitstrings and unsigned integers are allowed to participate in the operation

output

RESULT : ANY_PLAIN the result of the operation;
 the type of the result depends on the types of the involved operands;
 as above, the same rules of the "AND" (&) operator apply (see [1] for details)

 - if only bitstrings are used, the result is a bitstring of the larger involved size;
- if also unsigned integers are used, the result is an unsigned integer of the larger involved

size

OR

Applies a bitwise OR to all the given operands.

 ST-Script Guidelines 1.38

 Page 42 of 562

RESULT = OR (V1, V2 [, … , VN])

Same as:
V1 | V2 | … | VN (or V1 OR V2 OR … OR VN)

input

V# : ANY_PLAIN the values to be combined in OR;
 the limitations are the same as the "OR" (|) operator (see [1] for details)

 - only bitstrings and unsigned integers are allowed to participate in the operation

output

RESULT : ANY_PLAIN the result of the operation;
 the type of the result depends on the types of the involved operands;
 as above, the same rules of the "OR" (|) operator apply (see [1] for details)

 - if only bitstrings are used, the result is a bitstring of the larger involved size;
- if also unsigned integers are used, the result is an unsigned integer of the larger involved

size

XOR

Applies a bitwise XOR to all the given operands.

RESULT = XOR (V1, V2 [, … , VN])

Same as:
V1 ^ V2 ^ … ^ VN (or V1 XOR V2 XOR … XOR VN)

input

V# : ANY_PLAIN the values to be combined in XOR;
 the limitations are the same as the "XOR" (^) operator (see [1] for details)

 - only bitstrings and unsigned integers are allowed to participate in the operation

output

RESULT : ANY_PLAIN the result of the operation;
 the type of the result depends on the types of the involved operands;
 as above, the same rules of the "XOR" (^) operator apply (see [1] for details)

 - if only bitstrings are used, the result is a bitstring of the larger involved size;
- if also unsigned integers are used, the result is an unsigned integer of the larger involved

size

NOT

Negates (bitwise) the value of the given operand.

RESULT = NOT (V)

Same as:
!V

input

V : ANY_PLAIN the value to be negated;
 the limitations are the same as the "!" operator (see [1] for details)

output

RESULT : ANY_PLAIN the result of the negation;

 ST-Script Guidelines 1.38

 Page 43 of 562

 the type of the result depends on the type of the operand (usually but not
necessarily the same);

 as above, the same rules of the "!" operator apply (see [1] for details)

 ST-Script Guidelines 1.38

 Page 44 of 562

Comparison functions

A whole family of functions is dedicated to the comparisons of multiple values. All of them work in a similar
way: they accept as input a list of values (in variable number) and apply the same comparison operator to all.
The output is always a boolean value stating the result of the comparison.

RESULT = <XX> (V1, V2 [, … , VN])

input

V# : ANY_PLAIN the list of values to be compared;
 values of heterogeneous types are allowed to be given;
 for compatibility between different types refer to [1] and the notes about the

corresponding comparison operators (<, >, <=, >=, =, <>)

output

RESULT : BOOL the result of the comparison

See the following descriptions for notes about the individual functions.

LT
"Less Than", applied to all the operands.
TRUE if the parameters are given in a monotonic strictly increasing sequence.
Same as:
((V1 < V2) AND (V2 < V3) AND (V3 < V4) AND …)

LE
"Less than or Equal to", applied to all the operands.
TRUE if the parameters are given in a monotonic non-decreasing sequence.
Same as:
((V1 <= V2) AND (V2 <= V3) AND (V3 <= V4) AND …)

GT
"Greater Than", applied to all the operands.
TRUE if the parameters are given in a monotonic strictly decreasing sequence.
Same as:
((V1 > V2) AND (V2 > V3) AND (V3 > V4) AND …)

GE
"Greater than or Equal to", applied to all the operands.
TRUE if the parameters are given in a monotonic non-increasing sequence.
Same as:
((V1 >= V2) AND (V2 >= V3) AND (V3 >= V4) AND …)

EQ
"Equal to", applied to all the operands.
TRUE if all the parameters are equal.
Same as:
((V1 = V2) AND (V2 = V3) AND (V3 = V4) AND …)

NE
"Not Equal to", applied to all the operands.
TRUE if all the parameters are different.
Same as:
(((V1 <> V2) AND (V1 <> V3) AND (V1 <> V4) AND …) AND

 ((V2 <> V3) AND (V2 <> V4) AND (V2 <> V5) AND …) AND

 ST-Script Guidelines 1.38

 Page 45 of 562

 ((V3 <> V4) AND (V3 <> V5) AND (V3 <> V6) AND …) AND …)

 ST-Script Guidelines 1.38

 Page 46 of 562

String functions

LEN

Returns the length, in characters, of a given string.

LENGTH = LEN (STRVAL)

input

STRVAL : ANY_STRING the interested string

output

LENGTH : UINT number of characters in the string;
 not to be confused with the allocated size of the string

LEFT

Creates a string made of the first (left) N characters of another given one.

RESULT = LEFT (STRVAL, LENGTH)

input

STRVAL : ANY_STRING the initial string, from which the result is extracted
LENGTH : ANY_INT the number of characters to extract;
 this is the maximum length of the RESULT string;
 the RESULT could be shorter than this if not enough characters exist in the

source STRVAL

output

RESULT : ANY_STRING the sub-string extracted from the source STRVAL;
 will replicate the exact type of the source string

RIGHT

Creates a string made of the last (right) N characters of another given one.

RESULT = RIGHT (STRVAL, LENGTH)

input

STRVAL : ANY_STRING the initial string, from which the result is extracted
LENGTH : ANY_INT the number of characters to extract;
 this is the maximum length of the RESULT string;
 the RESULT could be shorter than this if not enough characters exist in the

source STRVAL

output

RESULT : ANY_STRING the sub-string extracted from the source STRVAL;
 will replicate the exact type of the source string

MID

 ST-Script Guidelines 1.38

 Page 47 of 562

Creates a string made of a given number of characters extracted from another given one, starting from a given
position.

RESULT = MID (STRVAL, LENGTH, POSITION)

Example:
MID ("abcdef", 2, 3) = "cd"

MID ("abcdef", 2, -10) = "ab"

MID ("abcdef", 2, 10) = ""

input

STRVAL : ANY_STRING the initial string, from which the result is extracted
LENGTH : ANY_INT the number of characters to extract;
 this is the maximum length of the RESULT string;
 the RESULT could be shorter than this if not enough characters exist in the

source STRVAL
POSITION : ANY_INT the index (base 1) of the 1st character of the source string, starting from which

the sub-string has to be extracted;
 if this index is < 1, then the extraction starts from the 1st character of the

source string;
 if this index exceeds the actual length of the source, the result will simply be

an empty string

output

RESULT : ANY_STRING the sub-string extracted from the source STRVAL;
 will replicate the exact type of the source string

CONCAT

Creates a string made as the concatenation of a number of other given strings.

RESULT = CONCAT (STR1, STR2 […, STRN])

Same as:
STR1 + STR2 + … STRN

Example:
CONCAT ("ab", "cd", "ef") = "abcdef"

input

STR# : ANY_STRING all the strings that have to be concatenated

output

RESULT : ANY_STRING the complete concatenated string;
 the type will be the higher class of the involved source strings
 (WSTRING > STRING)

INSERT

Creates a string inserting one in another, starting from a given position.

RESULT = INSERT (STR1, STR2, POSITION)

Example:
INSERT ("abcd", "1234", 3) = "ab1234cd"

INSERT ("abcd", "1234", -10) = "1234abcd"

INSERT ("abcd", "1234", 10) = "abcd1234"

 ST-Script Guidelines 1.38

 Page 48 of 562

input

STR1 : ANY_STRING the string where STR2 will be inserted
STR2 : ANY_STRING the string that will be inserted in STR1
POSITION : ANY_INT the index (base 1) of the 1st character of STR2 when inserted in STR1;
 if this index is < 1, then the insertion starts from the 1st character of the

source string;
 if this index exceeds the actual length of the source, then the insertion starts

from the end of the string (working as a plain append)

output

RESULT : ANY_STRING the complete concatenated string;
 the type will be the higher class of the involved source strings
 (WSTRING > STRING)

DELETE

Creates a string deleting characters from another given one.

RESULT = DELETE (STRVAL, LENGTH, POSITION)

Example:
DELETE ("abcdef", 2, 3) = "abef"

DELETE ("abcdef", 2, -10) = "cdef"

DELETE ("abcdef", 2, 10) = "abcdef"

input

STRVAL : ANY_STRING the initial string, from which characters are deleted
LENGTH : ANY_INT the number of characters that have to be deleted from STRVAL
POSITION : ANY_INT the index (base 1) of the 1st character of STRVAL that has to be deleted
 if this index is < 1, then the deletion starts from the 1st character of the source

string;
 if this index exceeds the actual length of the source, then nothing will be

deleted

output

RESULT : ANY_STRING the final string, purged from unneeded characters;
 will replicate the exact type of the source string

REPLACE

Creates a string replacing some characters of one with characters of another.

RESULT = REPLACE (STR1, STR2, LENGTH, POSITION)

Example:
REPLACE ("abcdef", "1234", 2, 3) = "ab12ef"

REPLACE ("abcdef", "1234", 4, -10) = "1234ef"

REPLACE ("abcdef", "1234", 4, 10) = "abcdef"

REPLACE ("abcdef", "1234", 4, 5) = "abcd12"

input

STR1 : ANY_STRING the string that will have some characters replaced
STR2 : ANY_STRING the string that provides the characters to be used in the replacement
LENGTH : ANY_INT the number of characters that have to be replaced;

 ST-Script Guidelines 1.38

 Page 49 of 562

 this is actually a maximum number of characters, since in STR2 there could be
less characters than the declared needed ones; in this case only the available
characters are replaced, while the others remain unaffected;

POSITION : ANY_INT the index (base 1) of the 1st character of STR1 that has to be replaced;
 if this index is < 1, then the replacement starts from the 1st character of the

source string;
 if this index exceeds the actual length of the source, then nothing will be

replaced;
 if the replacement starts within the actual source limits, but (due to POSITION +

LENGTH) ends after its available length, then only the available characters are
replaced (no new characters are appended to the initial string: the result is
always expected to have the same length as the source STR1)

output

RESULT : ANY_STRING the modified string;
 the type will be the higher class of the involved source strings
 (WSTRING > STRING)

REVERSE

Creates a string inverting the position of all of its characters.

RESULT = REVERSE (STRVAL)

Example:
REVERSE ("abcdef") = "fedcba"

input

STRVAL : ANY_STRING the string that has to be reversed

output

RESULT : ANY_STRING the reversed string;
 will replicate the exact type of the source string

SPLIT

Splits a string formatted with separated pieces, and produces an array containing a string piece in each of its
elements.

ARRAY = SPLIT (STRVAL [, SEPARATOR [, ELEMENTS [, START]]])

input

STRVAL : ANY_STRING the string that has to be split
SEPARATOR : ANY_CHARS [OPTIONAL] the character that has to be recognized as pieces separator;
 can be given as any kind of character or any kind of string; in case of

strings, only the 1st character is considered;
 SYSBLANKS (“$FFFF”) is a special character used to indicate that all

sequences of spaces (0x20) and tabs (0x09) must be considered a
separation; in this case sequences of consecutive blanks
(consecutive multiple spaces and/or tabs) only count for a single
separator

 if missing, the default separator is SYSBLANKS
ELEMENTS : ANY_INT [OPTIONAL] the number of pieces returned in the output array;
 must be ≥ 0: 0 means all the elements must be returned, > 0 is used

to limit the output size;

 ST-Script Guidelines 1.38

 Page 50 of 562

 if missing, the function returns all the pieces found in the given
string;

 if more elements than the available pieces are requested, then a
number of array elements might be returned as empty strings

START : ANY_INT [OPTIONAL] the position index (base 1) of the 1st string piece returned in the
output array;

 must be > 0;
 if missing, the function starts from the 1st string piece;
 if the given index is greater than the number of pieces available in

the given string, then all the returned elements will be empty;
 even if the starting position is within the number of existing pieces,

it’s still possible that START + ELEMENTS exceeds the available range;
in this case a number of elements in the output array might be
returned as empty string

output

ARRAY : ANY the returned value is actually an array of strings (same type of strings as the
source STRVAL);

 the number of elements will depend on the given ELEMENTS parameter, or on
the actual number of pieces found in the source STRVAL

Examples:
- generic application cases:
SPLIT ("ab cd ef") = ("ab" , "cd" , "ef")

SPLIT ("ab cd ef") = ("ab" , "cd" , "ef")

SPLIT ("ab cd ef", SYSBLANKS) = ("ab" , "cd" , "ef")

SPLIT ("ab cd ef", " ") = ("ab" , "cd" , "ef")

SPLIT ("ab cd ef", " ") = ("ab" , "" , "cd" , "" , "ef")

- watch out for proper separator:
SPLIT ("ab cd ef", ";") = ("ab cd ef")

- watch out for multiple occurrences of a separator:
SPLIT ("ab;;cd;ef", ";", 3) = ("ab" , "" , "cd")

- only few pieces requested:
SPLIT ("ab,cd,ef", ",", 2) = ("ab" , "cd")

- moving forward the extraction point:
SPLIT ("ab,cd,ef,gh", ",", 2, 3) = ("ef" , "gh")

- requesting more pieces than available:
SPLIT ("ab,cd,ef", ",", 5) = ("ab" , "cd" , "ef" , "" , "")

- requesting more pieces than available from a given position:
SPLIT ("ab cd ef gh ij", " ", 3, 4) = ("gh" , "ij" , "")

- when the extraction begins past the end of the string:
SPLIT ("ab cd ef gh ij", " ", 3, 6) = ("" , "" , "")

A note about the assignment of the returned array to a result variable: the standard rules for assignments of
arrays apply, so programmers should take care of the following:
- the type of the variable array elements must be exactly the same as the type of the returned elements; this

means there must be correspondence between STRING/STRING and WSTRING/WSTRING types;
- the variable array is allowed to have a different number of elements than the returned array only in case of

LAX_TYPES option enabled;
- in this case, having a bigger variable will leave some of its elements empty, while having a smaller variable

will only make it able to store the first pieces.

FIND

Finds the position of the occurrence of a string within another.

POSITION = FIND (STR1, STR2)

Example:
FIND ("abCDCDef", "CD") = 3

 ST-Script Guidelines 1.38

 Page 51 of 562

input

STR1 : ANY_STRING the string that might contain STR2
STR2 : ANY_STRING the sub-string that might be contained in STR1

output

POSITION : UINT the position of the (first) occurrence of STR2 within STR1;
 this is basically the index (base 1) of the 1st character of STR2 in STR1;
 if the sub-string is not found, the result is 0;
 the performed search is case sensitive

RFIND

Finds the position of the occurrence of a string within another;
the search of the sub-string is performed starting from the right.

POSITION = RFIND (STR1, STR2)

Example:
RFIND ("abCDCDef", "CD") = 5

input

STR1 : ANY_STRING the string that might contain STR2
STR2 : ANY_STRING the sub-string that might be contained in STR1

output

POSITION : UINT the position of the (last) occurrence of STR2 within STR1;
 this is basically the index (base 1) of the 1st character of STR2 in STR1;
 if the sub-string is not found, the result is 0;
 the performed search is case sensitive

LCASE

Converts a string in lowercase characters.

RESULT = LCASE (STRVAL)

Example:
LCASE ("AbCdEf") = "abcdef"

input

STRVAL : ANY_STRING the string that has to be converted

output

RESULT : ANY_STRING a copy of the source string with all the alphabetic characters converted in
lowercase;

 will replicate the exact type of the source string

UCASE

Converts a string in uppercase characters.

RESULT = UCASE (STRVAL)

 ST-Script Guidelines 1.38

 Page 52 of 562

Example:
UCASE ("AbCdEf") = "ABCDEF"

input

STRVAL : ANY_STRING the string that has to be converted

output

RESULT : ANY_STRING a copy of the source string with all the alphabetic characters converted in
uppercase;

 will replicate the exact type of the source string

TRIM

Removes from the head (left) and from the tail (right) of a string all the consecutive occurrences of a given
character.

RESULT = TRIM (STRVAL, CHARACTER)

Example:
TRIM ("---abcdef---", "-") = "abcdef"

input

STRVAL : ANY_STRING the string that has to be trimmed
CHARACTER : ANY_CHARS [OPTIONAL] the character that has to be removed from the source string;

can be given as any kind of character or any kind of string; in case of
strings, only the 1st character is considered;
the special constant SYSBLANKS (“$FFFF”) is supported, meaning that
all spaces (0x20) and tabs (0x09) must be removed;
if missing, the default is SYSBLANKS

output

RESULT : ANY_STRING the source string purged from all the initial and final occurrences of the
character;

 will replicate the exact type of the source string

LTRIM

Removes from the head (left) of a string all the consecutive occurrences of a given character.

RESULT = LTRIM (STRVAL, CHARACTER)

Example:
LTRIM ("---abcdef---", "-") = "abcdef---"

input

STRVAL : ANY_STRING the string that has to be trimmed
CHARACTER : ANY_CHARS [OPTIONAL] the character that has to be removed from the source string;

can be given as any kind of character or any kind of string; in case of
strings, only the 1st character is considered;
the special constant SYSBLANKS (“$FFFF”) is supported, meaning that
all spaces (0x20) and tabs (0x09) must be removed;
if missing, the default is SYSBLANKS

output

 ST-Script Guidelines 1.38

 Page 53 of 562

RESULT : ANY_STRING the source string purged from all the initial occurrences of the character;
 will replicate the exact type of the source string

RTRIM

Removes from the tail (right) of a string all the consecutive occurrences of a given character.

RESULT = RTRIM (STRVAL, CHARACTER)

Example:
RTRIM ("---abcdef---", "-") = "---abcdef"

input

STRVAL : ANY_STRING the string that has to be trimmed
CHARACTER : ANY_CHARS [OPTIONAL] the character that has to be removed from the source string;

can be given as any kind of character or any kind of string; in case of
strings, only the 1st character is considered;
the special constant SYSBLANKS (“$FFFF”) is supported, meaning that
all spaces (0x20) and tabs (0x09) must be removed;
if missing, the default is SYSBLANKS

output

RESULT : ANY_STRING the source string purged from all the final occurrences of the character;
 will replicate the exact type of the source string

SETLENGTH

Sets a precise length for a string.

RESULT = SETLENGTH (STRVAL, FILLCHAR, LENGTH, RIGHT)

Example:
SETLENGTH ("abcdef", "-", 3, TRUE) = "abc" // cut

SETLENGTH ("abcdef", "-", 8, FALSE) = "--abcdef" // extend on the left

SETLENGTH ("abcdef", "-", 8, TRUE) = "abcdef--" // extend on the right

SETLENGTH ("abcdef", "", 8, TRUE) = "abcdef" // reallocate but don't change

input

STRVAL : ANY_STRING the string that has to be changed
FILLCHAR : ANY_CHARS the character that has to be used to fill up the string space in case the given

LENGTH is longer than the original STRVAL length;
 can be given as any kind of character or any kind of string; in case of strings,

only the 1st character is used
LENGTH : ANY_INT new length for the string;
 if shorter than the original length, the source string is truncated;
 if longer than the original length, the source string is padded with FILLCHAR

characters
RIGHT : BOOL declares where the padding has to happen in case of longer length;
 if TRUE, FILLCHARs are appended on the right, otherwise on the left

output

RESULT : ANY_STRING the source string with the length adjusted;
 will replicate the exact type of the source string

 ST-Script Guidelines 1.38

 Page 54 of 562

HEX

Formats an integer value in a string with hexadecimal notation.

RESULT = HEX (V)

Example:
HEX (171) = "AB"

input

V : ANY_INT the value that has to be formatted

output

RESULT : STRING the string where the value V is written in hexadecimal

OCT

Formats an integer value in a string with octal notation.

RESULT = OCT (V)

Example:
OCT (171) = "253"

input

V : ANY_INT the value that has to be formatted

output

RESULT : STRING the string where the value V is written in octal

BIN

Formats an integer value in a string with binary notation.

RESULT = BIN (V)

Example:
BIN (171) = "10101011"

input

V : ANY_INT the value that has to be formatted

output

RESULT : STRING the string where the value V is written in binary

ASC

Retrieves the (ascii/unicode) code of a character.

RESULT = ASC (CHARACTER)

Example:
ASC ("A") = 65

 ST-Script Guidelines 1.38

 Page 55 of 562

input

CHARACTER : ANY_CHARS the interested character;
 can be given in character or string form; in case of strings, the 1st character is

considered;
 in case of character type, this function acts the same way as an ANY_TO_INT;
 in case of strings though, an ANY_TO_INT would return the numeric value

formatted in the string, while this ASC function returns the code of its first
character (similar to an ANY_TO_INT(STRING[0]))

output

RESULT : UINT the code of the character

 ST-Script Guidelines 1.38

 Page 56 of 562

Utility functions

ISSTRUCTURE

Checks a value to see if its type is a derived structure.

STATE = ISSTRUCTURE (V)

input

V : ANY the variable/value to be checked

output

STATE : BOOL returns TRUE if the submitted value is a structure; FALSE otherwise

ISFUNCTION

Checks a value to see if it is a function block instance.

STATE = ISFUNCTION (V)

input

V : ANY the variable/value to be checked

output

STATE : BOOL returns TRUE if the submitted value is defined as the instance of a function
block; FALSE otherwise

ISARRAY

Checks a value to see if its type is an array.

STATE = ISARRAY (V)

input

V : ANY the variable/value to be checked

output

STATE : BOOL returns TRUE if the submitted value is an array (of whatever type); FALSE
otherwise

NUMDIM

Counts the number of dimensions of an array.

DIMENSIONS = NUMDIM (V)

input

V : ANY the variable/value to be checked; ideally, but not necessarily, an array

output

 ST-Script Guidelines 1.38

 Page 57 of 562

DIMENSIONS : ULINT returns the number of dimensions of the submitted array;
 if V is not an array, 0 is returned

LBOUND

Retrieves the lower bound of the range of indexes of an array.

INDEX = LBOUND (V)

Example:
for an array like VAR A1[2..5] OF INT; END_VAR; the bound is LBOUND(A1) = 2
for an array like VAR A2[7] OF INT; END_VAR; the bound is LBOUND(A2) = 0

input

V : ANY the variable/value to be checked; ideally, but not necessarily, an array

output

INDEX : LINT returns the lowest possible index (lower bound) for the elements of the
submitted array;

 if V is not an array, the function returns 0;
 in case of array with multiple dimensions, only the 1st dimension is considered

Note that to handle multiple dimensions, ISARRAY and NUMDIM can be used to trace the correct conditions,
and calls like the following can be used:
VarLb1 = LBOUND (V); // lower bound of 1st dimension

VarLb2 = LBOUND (V[VarLb1]); // lower bound of 2nd dimension

VarLb3 = LBOUND (V[VarLb1,VarLb2]); // lower bound of 3rd dimension

and so on.

UBOUND

Retrieves the upper bound of the range of indexes of an array.

INDEX = UBOUND (V)

Example:
for an array like VAR A1[2..5] OF INT; END_VAR; the bound is UBOUND(A1) = 5
for an array like VAR A2[7] OF INT; END_VAR; the bound is UBOUND(A2) = 6

input

V : ANY the variable/value to be checked; ideally, but not necessarily, an array

output

INDEX : LINT returns the highest possible index (upper bound) for the elements of the
submitted array;

 if V is not an array, the function returns 0;
 in case of array with multiple dimensions, only the 1st dimension is

considered; see notes above

SIZEOF

Retrieves the total size, in bytes, of the value of the given parameter.

 ST-Script Guidelines 1.38

 Page 58 of 562

Mainly used to measure the size of complex types, such as user-defined structures or arrays, or nidified
components.

SIZE = SIZEOF (V)

Examples:

for an array like
 VAR

 VA[2..5] OF INT;

 END_VAR;

the size would be
 SIZEOF(VA) = 8

for a structure like
 TYPE StrA :

 STRUCT

 f1 : SINT;

 f2 : SINT;

 END_STRUCT;

 END_TYPE;

 TYPE StrB :

 STRUCT

 f1 : DINT;

 f2 : ARRAY [4] OF StrA;

 END_STRUCT;

 END_TYPE;

 VAR

 VS : StrB;

 END_VAR;

the size would be
 SIZEOF(VS) = 12
 SIZEOF(VS.f2) = 8
 SIZEOF(VS.f2[3].f1) = 1

input

V : ANY the variable/value to be checked

output

SIZE : LINT returns the size, in bytes, of the value of the given parameter (a measure of
the memory space taken by the value)

TYPEOF

Retrieves the name of the type of the given parameter.
Mainly used for debug purposes, in cases where the parameter comes from sources with variable type (such as
system functions with output in the ANY class.

TYPE = TYPEOF (V)

Example:

TYPE MyTypeStruct :

 STRUCT FieldName : INT; END_STRUCT;

END_TYPE;

TYPE MyTypeArray :

 ARRAY [1..10] OF ARRAY [3..4] OF INT;

END_TYPE;

TYPE MyTypeEnum :

 (val1, val2, val3) := val2 ;

END_TYPE ;

VAR

 ST-Script Guidelines 1.38

 Page 59 of 562

 si: INT;

 au : ARRAY [5] OF UDINT;

 ca : MyTypeArray;

 cs : MyTypeStruct;

 ce : MyTypeEnum;

 aca : ARRAY[2] OF MyTypeArray;

 acs : ARRAY[2] OF MyTypeStruct;

 ace : ARRAY[2] OF MyTypeEnum;

END_VAR;

_TRACE (TYPEOF (123));

_TRACE (TYPEOF (si));

_TRACE (TYPEOF (au));

_TRACE (TYPEOF (ca));

_TRACE (TYPEOF (cs));

_TRACE (TYPEOF (ce));

_TRACE (TYPEOF (aca));

_TRACE (TYPEOF (acs));

_TRACE (TYPEOF (ace));

the output would be:

ULINT

INT

ARRAY [5:0..4] OF UDINT

ARRAY [20:1..10,3..4] OF INT

MyTypeStruct (STRUCT)

MyTypeEnum (ENUM)

ARRAY [40:0..1,1..10,3..4] OF INT

ARRAY [2:0..1] OF MyTypeStruct (STRUCT)

ARRAY [2:0..1] OF MyTypeEnum (ENUM)

as shown:
- either standard or custom type names can be retrieved,
- complex types show their class (struct, enum, function),
- arrays show their total number of elements, along with the exact ranges of all their dimensions

input

V : ANY the variable/value to be checked

output

TYPE : WSTRING returns the name of the parameter data type

 ST-Script Guidelines 1.38

 Page 60 of 562

Value conversion functions

DEG_TO_RAD

Converts an angle measure from degrees to radians.

RAD = DEG_TO_RAD (DEG)

Example:
DEG_TO_RAD(180) = _PI

input

DEG : ANY_NUM the measure of an angle in degrees

output

RAD : LREAL returns the measure converted in radians

RAD_TO_DEG

Converts an angle measure from radians to degrees.

DEG = RAD_TO_DEG (RAD)

Example:
RAD_TO_DEG(_PI) = 180

input

RAD : ANY_NUM the measure of an angle in radians

output

DEG : LREAL returns the measure converted in degrees

BCD_TO_BIN

Converts an unsigned integer value coded in BCD in a plain binary value.

BIN = BCD_TO_BIN (BCD)

Example:
BCD_TO_BIN(16#1234) = 16#4D2 = 1234

input

BCD : ANY_UNSIGNED a value coded in BCD (the binary content of the value must be coded in BCD)

output

BIN : ANY_UNSIGNED the value converted from the original BCD to its plain binary value;
 replicates the type of the submitted BCD

BIN_TO_BCD

 ST-Script Guidelines 1.38

 Page 61 of 562

Converts any plain unsigned integer value in its corresponding BCD coding.

BCD = BIN_TO_BCD (BIN)

Example:
BIN_TO_BCD(1234) = 16#1234 = 4660

input

BIN : ANY_UNSIGNED the value to be converted in BCD

output

BCD : UI64 the value converted in BCD;
 note that the size of the result (64 bits) could be unable to fit the entire

converted values; in that case truncations might happen

 ST-Script Guidelines 1.38

 Page 62 of 562

Type conversion functions

A whole family of functions is dedicated to the conversion of the values types: a function ANY_TO_<TYPE> exists
for each of the existing elementary types, and all of them work in a similar way: they accept as input a value of
any of the existing 'plain' types (usually any type except arrays and structures), and return it converted in a
value of the selected type.

CONVERTEDVAL = ANY_TO_<TYPE> (SOURCEVAL)

input

SOURCEVAL : ANY_PLAIN the value to be converted;
 from function to function, differences might exist among the list of types

actually allowed in input

output

CONVERTEDVAL : <TYPE> the result of the conversion

See the following descriptions for notes about the individual functions.

ANY_TO_SINT
Convert any plain value to a signed short integer (8 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Range overflows in the source value are not considered errors: simply the lowest byte of the result is retained
ad result.
Can be invoked with the alias CSINT.

ANY_TO_INT
Convert any plain value to a signed integer (16 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Range overflows in the source value are not considered errors: simply the 2 lowest bytes of the result is
retained ad result.
Can be invoked with the alias CINT.

ANY_TO_DINT
Convert any plain value to a signed double integer (32 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Range overflows in the source value are not considered errors: simply the 4 lowest bytes of the result is
retained ad result.
Can be invoked with the alias CDINT.

ANY_TO_LINT
Convert any plain value to a signed long integer (64 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Can be invoked with the alias CLINT.

ANY_TO_USINT

 ST-Script Guidelines 1.38

 Page 63 of 562

Convert any plain value to an unsigned short integer (8 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Range overflows in the source value are not considered errors: simply the lowest byte of the result is retained
ad result.
Can be invoked with the alias CUSINT.

ANY_TO_UINT
Convert any plain value to an unsigned integer (16 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Range overflows in the source value are not considered errors: simply the 2 lowest bytes of the result is
retained ad result.
Can be invoked with the alias CUINT.

ANY_TO_UDINT
Convert any plain value to an unsigned double integer (32 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Range overflows in the source value are not considered errors: simply the 4 lowest bytes of the result is
retained ad result.
Can be invoked with the alias CUDINT.

ANY_TO_ULINT
Convert any plain value to an unsigned long integer (64 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Can be invoked with the alias CULINT.

ANY_TO_REAL
Convert any plain value to a single precision floating-point (32 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Can be invoked with the alias CREAL.

ANY_TO_LREAL
Convert any plain value to a double precision floating-point (64 bits).
. In case of strings, the written value is converted.
. In case of characters, their numeric code is converted.
. In case of times, dates and bitstrings, their pseudo-numeric value is converted.
Can be invoked with the alias CLREAL.

ANY_TO_TIME
Convert any plain value in a TIME value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 32 bits integer).
Range truncations might occur.

. LTIMEs are more precisely converted: other than being truncated if needed, their value of course loses the
precision beyond the milliseconds.

. Strings are expected to have the same format as the TIME and LTIME constants of the language
(for example "11d22h33m44s55ms", "11d22h33m44s55ms66us77ns").

Can be invoked with the alias CTIME.

 ST-Script Guidelines 1.38

 Page 64 of 562

ANY_TO_LTIME
Convert any plain value in a Long TIME value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 64 bits integer).
Range truncations might occur.

. TIMEs are more precisely converted: they are simply translated into the new format, since both range and
precision don't need adjustments.

. Strings are expected to have the same format as the TIME and LTIME constants of the language
(for example "11d22h33m44s55ms", "11d22h33m44s55ms66us77ns").

Can be invoked with the alias CLTIME.

ANY_TO_DATE
Convert any plain value in a DATE value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 16 bits integer).
Range truncations might occur.

. DTs and LDTs (date and time) have their date component taken and assigned to the result.

. Strings are expected to have the same format as the DATE constants of the language
(for example "2018-5-24").

Can be invoked with the alias CDATE.

ANY_TO_TOD
Convert any plain value in a TIME_OF_DAY value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 32 bits integer).
Range truncations might occur.

. DTs and LDTs (date and time) have their time component taken and assigned to the result; in case of LDTs,
the precision might have to be truncated.

. LTODs are downsized to TODs, having their precision truncated.

. Strings are expected to have the same format as the TOD or LTOD constants of the language
(for example "23:59:59.990", "23:59:59.990_234_075", "23:59:59.123456789").

Can be invoked with the alias CTOD.

ANY_TO_LTOD
Convert any plain value in a Long TIME_OF_DAY value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 64 bits integer).
Range truncations might occur.

. DTs and LDTs (date and time) have their time component taken and assigned to the result; range and
precision don't need adjustments.

. TODs are simply translated into the new format; again, range and precision don't need adjustments

. Strings are expected to have the same format as the TOD or LTOD constants of the language
(for example "23:59:59.990", "23:59:59.990_234_075", "23:59:59.123456789").

Can be invoked with the alias CLTOD.

ANY_TO_DT
Convert any plain value in a DATE_AND_TIME value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 32 bits integer).
Range truncations might occur.

. DATEs are used to compose a DT with a time component set to 00:00:00.0.

. LDTs are downsized to DTs, having the precision of the time component truncated.

. Strings are expected to have the same format as the DT or LDT constants of the language
(for example "2018-5-24-23:59:59.990", "2018-5-24-23:59:59.990_234_075").

Can be invoked with the alias CDT.

 ST-Script Guidelines 1.38

 Page 65 of 562

ANY_TO_LDT
Convert any plain value in a Long DATE_AND_TIME value.
. All numeric and pseudo-numeric values, including characters, bitstrings and incompatible dates and times,

have simply their numeric value converted into the numeric value of the result (unsigned 64 bits integer).
Range truncations might occur.

. DATEs are used to compose a LDT with a time component set to 00:00:00.0.

. DTs are simply converted to LDTs, with no precision issues.

. Strings are expected to have the same format as the DT or LDT constants of the language
(for example "2018-5-24-23:59:59.990", "2018-5-24-23:59:59.990_234_075").

Can be invoked with the alias CLDT.

ANY_TO_STRING
Convert any plain value in an 8 bits string.
. All numeric values, both integer and floating-point, are simply formatted in the corresponding string.
. CHARs and WCHARs are converted in a string made of 1 only character; wide chars might have their code

truncated.
. WSTRINGs are converted in corresponding strings with characters truncated to 8 bits codes.
. All the date and time values (TIME, LTIME, DATE, TOD, LTOD, DT, LDT) are formatted in strings with the same

format as the corresponding constant of the language.
Can be invoked with the alias CSTRING.

ANY_TO_WSTRING
Convert any plain value in a 16 bits string.
. All numeric values, both integer and floating-point, are simply formatted in the corresponding wide string.
. CHARs and WCHARs are converted in a wide string made of 1 only character.
. STRINGs are simply copied in corresponding wide strings.
. All the date and time values (TIME, LTIME, DATE, TOD, LTOD, DT, LDT) are formatted in wide strings with the

same format as the corresponding constant of the language.
Can be invoked with the alias CWSTRING.

ANY_TO_CHAR
Convert any plain value in an 8 bits character.
. All numeric and pseudo-numeric values, including bitstrings, dates and times, have simply their numeric value

converted into the numeric value of the result (unsigned 8 bits integer), that represents the code (ascii) of the
character. Range truncations might occur.

. Strings are converted in a result made of their first character only; wide strings might have the character code
truncated; empty strings return NUL (0).

Can be invoked with the alias CCHAR.

ANY_TO_WCHAR
Convert any plain value in a 16 bits character.
. All numeric and pseudo-numeric values, including bitstrings, dates and times, have simply their numeric value

converted into the numeric value of the result (unsigned 16 bits integer), that represents the code (unicode)
of the character. Range truncations might occur.

. Strings are converted in a result made of their first character only; empty strings return NUL (0).
Can be invoked with the alias CWCHAR.

ANY_TO_BOOL
Convert any plain value in a boolean.
. All numeric and pseudo-numeric values, including other bitstrings, characters, dated and times, make a FALSE

boolean value if their value is 0; they make a TRUE boolean instead for any value different from 0.
. In case of strings, they are first converted in integers; the numeric values then are converted as above.
Can be invoked with the alias CBOOL.

ANY_TO_BYTE
Convert any plain value in a byte (8 bits bitstring).

 ST-Script Guidelines 1.38

 Page 66 of 562

. All numeric and pseudo-numeric values, including other bitstrings, characters, dated and times, have simply
their numeric value converted into the numeric value of the result (unsigned 8 bits integer). Range
truncations might occur.

. In case of strings, their formatted content is converted (and truncated if needed).
Can be invoked with the alias CBYTE.

ANY_TO_WORD
Convert any plain value in a word (16 bits bitstring).
. All numeric and pseudo-numeric values, including other bitstrings, characters, dated and times, have simply

their numeric value converted into the numeric value of the result (unsigned 16 bits integer). Range
truncations might occur.

. In case of strings, their formatted content is converted (and truncated if needed).
Can be invoked with the alias CWORD.

ANY_TO_DWORD
Convert any plain value in a double word (32 bits bitstring).
. All numeric and pseudo-numeric values, including other bitstrings, characters, dated and times, have simply

their numeric value converted into the numeric value of the result (unsigned 32 bits integer). Range
truncations might occur.

. In case of strings, their formatted content is converted (and truncated if needed).
Can be invoked with the alias CDWORD.

ANY_TO_LWORD
Convert any plain value in a long word (64 bits bitstring).
. All numeric and pseudo-numeric values, including other bitstrings, characters, dated and times, have simply

their numeric value converted into the numeric value of the result (unsigned 64 bits integer).
. In case of strings, their formatted content is converted.
Can be invoked with the alias CLWORD.

 ST-Script Guidelines 1.38

 Page 67 of 562

< CONSTANTS >

The following symbolic keywords can be used as constant values.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding values were written in their place.

symbolic type value

FALSE BOOL 0
TRUE BOOL 1

_PI LREAL 3.14159265358979323846
_E LREAL 2.71828182845904523536

 ST-Script Guidelines 1.38

 Page 68 of 562

4. SYSTEM

TRACE

For debugging purposes, used to trace a message on few output channels available to the system.

TRACE (MESSAGE)

input

MESSAGE : ANY_STRING message string to be traced;
 maximum length fixed at 10240 characters

The given message will be:
- printed on the local runtime process stdout stream;
- sent to ST debuggers attached from the configurator environment;
- sent to attached Visual Studio debuggers (for developers).

 ST-Script Guidelines 1.38

 Page 69 of 562

RUNAPPLICATION

Executes an application with given executable name and command-line parameters.

RESULT = RUNAPPLICATION (NAME, PARAMETERS, MODE [, STDOUT [, STDERR]])

input

NAME : ANY_STRING path and name of the executable file (path INcluded);
 the path can be either relative or absolute, and is allowed to start with system

keys such as $RESOURCES or $LOG (see ‘File paths conventions’ at the
beginning of the ‘FILE’ section)

PARAMETERS : ANY_STRING command line parameters;
 includes all the extra parameters to be passed to the process; programmers

can quote parameters where separation ambiguities may arise;
 can be an empty string if no parameters are required
MODE : ANY_INT defines the behaviour of the runtime in its interaction with the created

process; supported codes are:
0 (SYSRUNASYNCUNIQUE) : the new process runs asynchronously, but the runtime

makes sure to have only one external application running;
 typically used when applications with a user interface have to be executed

and the system doesn't allow to switch between them;
1 (SYSRUNASYNCFREE) : the new process runs asynchronously; the runtime just

creates and starts it; no further checks are involved; programmers are
allowed to execute as many processes as they need this way;

2 (SYSRUNBLOCKING) : the new process is 'blocking' for the script; the function
will not return until the new process has terminated; of course one only
blocking process at a time can exist

STDOUT : ANY_STRING [OPTIONAL] an optional file name;
if given, all the standard output stream of the new process will be
redirected to this file

STDERR : ANY_STRING [OPTIONAL] an optional file name;
if given, all the standard error stream of the new process will be
redirected to this file

output

RESULT : UDINT application result (the application process exit code);
 this output is meaningful only if the application has been executed in

SYSRUNBLOCKING mode (the runtime could wait for the application to actually
give its result);

 in all other modes the returned code is 0

About the optional STDOUT and STDERR files that can be used to redirect the standard output streams:
- these files are optional; omitting both of them doesn’t alter the standard output behaviour;
- if only a STDOUT is given (and no STDERR), then the standard output is redirected, while the standard error is

discarded;
- each of them can be given as an empty string; in this case the empty name is implicitly used as an indication

to redirect to the standard NULL device (just like giving an explicit “NUL” file in Windows, or a “/dev/null” file
in Linux); in this case no redirection file is created, and the standard output is simply discarded by the system;

- both streams can be redirected to the same file, simply giving the same file name in both parameters;
- the given file names are expected to follow the conventions explained at the beginning of the 5. COMMON FILES

chapter, with respect to the individuation of absolute, relative or system paths;
- the specified files are created as text files with UTF-8 encoding.

 ST-Script Guidelines 1.38

 Page 70 of 562

example

VAR

 i : INT;

 f : UDINT;

 s : WSTRING [256];

END_VAR;

// Execute 3 instances of a test application, each with its own output

FOR i := 1 TO 3 DO

 RUNAPPLICATION ('C:\[MyApps]\StdoutTest.exe', '', SYSRUNBLOCKING,

 'C:\[Documents]\OUT' + ANY_TO_STRING (i) + '.TXT',

 'C:\[Documents]\ERR' + ANY_TO_STRING (i) + '.TXT');

END_FOR;

// Read the output of the 1
st

 executed process and retrace it

f := FILE_OPEN ('C:\[Documents]\OUT1.TXT', FILEREAD, FILEDONTCREATE);

FILE_READENCODING (f); // Acquire the UTF-8 marker

WHILE (FILE_ISEOF(f) = FALSE) DO

 s := FILE_READSTRING (f, 256);

 _TRACE (s);

END_WHILE;

FILE_CLOSE (f);

 ST-Script Guidelines 1.38

 Page 71 of 562

KILLAPPLICATION

Terminates an application currently in execution.

KILLAPPLICATION (NAME)

input

NAME : ANY_STRING simple name of the executable file (path EXcluded)

The system forcefully terminates a process originated by an executable file with the given name.
If multiple existing processes are linked to the same file, or to files with the same name, the system simply
terminates the first process that satisfies the condition.

 ST-Script Guidelines 1.38

 Page 72 of 562

RUNSCRIPT

Executes a script code.

RUNSCRIPT (CODE)

input

CODE : ANY_STRING string containing a segment of ST script source code

Not to be confused with mere functions invocation.
This function accepts as parameter a whole segment of script code: it is basically meant to allow the execution
of scripts dynamically created at runtime.

This function is meant for execution only; it is possible to feed it any kind of script code, BUT it is not possible:
- to create new variables, new types or define new functions;
- to invoke other RUNSCRIPT functions;
- to use _BREAK statements to force breakpoints for debuggers.
It's intended to be used in cases where it is not possible to create the code at design time (the code below is
actually an example of what COULD instead be built at design time), or when the application itself demands
that script pieces are provided at runtime only, or when debuggers are involved (debuggers are allowed to
request the execution of lines of script code).

Keep in mind that the execution of code given through this function is much less performant than the
execution of regular code prepared at design time.

example

VAR

 MV : INT;

 MV1, MV2, MV3 : INT;

END_VAR;

// Just do something…

RUNSCRIPT ('FOR MV := 1 TO 10 DO /* … do something … */; END_FOR;');

// Assign 123 to MV1, MV2 or MV3, depending on the result of the function

MV := SomeRandomFunction ();

IF (MV >= 1) AND (MV <= 3) THEN

 RUNSCRIPT ('MV' + ANY_TO_STRING (MV) + ' := 123;');

END_IF;

// The code above is doing something like the following

MV := SomeRandomFunction ();

CASE (MV)

 1 : MV1 := 123;

 2 : MV2 := 123;

 3 : MV3 := 123;

END_CASE;

 ST-Script Guidelines 1.38

 Page 73 of 562

EXITRUNTIME

Terminates the execution of the runtime.

EXITRUNTIME ()

The runtime is supposed to gracefully shut down, fully closing and releasing every resource currently in use,
and flushing all pending buffers.

 ST-Script Guidelines 1.38

 Page 74 of 562

SLEEP
LSLEEP

Blocks the script execution for a given amount of time.

SLEEP (TIME)
LSLEEP (TIME)

input

TIME : ANY_INT duration of the wait;
 SLEEP : the parameter is given in milliseconds
 LSLEEP : the parameter is given in nanoseconds

 ST-Script Guidelines 1.38

 Page 75 of 562

ERRORGETMESSAGE

Retrieves a description message related to a given error code.

MESSAGE = ERRORGETMESSAGE (ERROR)

input

ERROR : ULINT code of the error

output

MESSAGE : WSTRING error description message

Unlike the variable ERRMSG, systematically giving the description of the error stored in ERRNO, this function can
be used to retrieve descriptions of any existing error code.

 ST-Script Guidelines 1.38

 Page 76 of 562

ERRORGETMODULE

Retrieves the name of the runtime module associated to a given error code.

MODULE = ERRORGETMODULE (ERROR)

input

ERROR : ULINT code of the error

output

MODULE : WSTRING name of the runtime module

The returned name is supposed to indicate the runtime module that generated/detected the error.

 ST-Script Guidelines 1.38

 Page 77 of 562

ERRORRESET

Resets the system variable used to store execution errors information.

ERRORRESET ()

The function execution is equivalent to the instructions:
ERRNO := 0;
ERRMSG := '';

 ST-Script Guidelines 1.38

 Page 78 of 562

FLUSHCONFIG

Flushes on persistent storage the buffers of the platform system configuration store.

FLUSHCONFIG ()

On Windows the function is used to flush the registry;
on Linux it's a plain flush of the dedicated configuration store file.

 ST-Script Guidelines 1.38

 Page 79 of 562

FLUSHPERSISTENT

Flushes on persistent storage the buffers of all the runtime logs with pending data.

FLUSHPERSISTENT ()

The flush applies to log files of:

- persistent internal tags,
- persistent external tags,
- alarms history records,
- alarms statistics information,
- datalog samples buffers,
- scheduler tasks,
- FDA auditor records.

Many of the involved elements have their own dedicated script function as well.

 ST-Script Guidelines 1.38

 Page 80 of 562

REFRESHIPADDRESSES

Scans the ethernet adapters and updates the system variables with the list of the available addresses.

REFRESHIPADDRESSES ()

The function affects the following system tags:

"SYS_NumIpAddresses" : the number of IP addresses currently available among all the existing ethernet

adapters;
"SYS_IpAddresses" : the list of the first 8 available IP addresses; there could be more than 1 address for

each available ethernet adapter;
"SYS_EthNames" : the list of the names of the ethernet adapters corresponding to the addresses set

in the previous variable (there is a name in <SYS_EthNames> for each address in
<SYS_IpAddresses>).

 ST-Script Guidelines 1.38

 Page 81 of 562

SETRESTAPIPREFIX

Sets a string used to identify the prefix in URLs of HTTP calls handled by the runtime web server.
Matching calls are the only ones forwarded to the dedicated events.

SETRESTAPIPREFIX (PREFIX)

input

PREFIX : ANY_STRING [OPTIONAL] the prefix string used to identify the needed calls;
- if a specific string is given, then only HTTP packets starting with it

are forwarded to the events;
- if an empty string is given, then all the packets are forwarded to the

events;
- if the parameter is missing, then the identification of the HTTP

packets is disabled, and no packet is ever forwarded to the events

This function is used to allow the system to select the HTTP packets - among those received by the web server -
that have to be forwarded to the dedicated “OnWebserverCall” runtime event functions.
The default behaviour at startup is: “nothing will be forwarded to the events”. This is to avoid unwanted calls
during the time between the startup and the first scripts execution (when an explicit initialization can be done
with this function). If packets have to be forwarded to the events, then at least a call to this function is
required.

HTTP calls to the web server are normally in the forms:
 <ipaddress>:<port>

 <ipaddress>:<port>/file

 <ipaddress>:<port>/p/a/t/h/file

 <ipaddress>:<port>/p/a/t/h/file?par1=val1&par2=val2

 <ipaddress>:<port>/p/a/t/h/?par1=val1&par2=val2

 <ipaddress>:<port>/?par1=val1&par2=val2

In general:
 <ipaddress>:<port>[/path/][file][parameters]

This function allows the specification of a string segment that will have to match the beginning of the packet
calls, following the <ipaddress>:<port> part (ideally but not necessarily in the “path” part).
For example, if a prefix like api/v1/ were given,
then an URL string like <ipaddress>:<port>/api/v1/status/Machine would be forwarded to the events,
while an URL string like <ipaddress>:<port>/js/master/RT.master.core.js would not.

 ST-Script Guidelines 1.38

 Page 82 of 562

SETRESTAPIRESPONSE

Sets a response string to be sent back as answer to clients invoking managed REST API functions through the
runtime web server.

SETRESTAPIRESPONSE (RESPONSE)

input

RESPONSE : ANY_STRING [OPTIONAL] the response string that the web server will send back to the client
that invoked the execution of a managed REST API function;
- if a specific string is given (even empty), then that exact string will

be used in the body of the HTTP answer
- if the parameter is missing, then the answer is explicitly cleared:

the webserver won’t return any immediate answer to the caller
(after the script execution) and proceed with extra management of
the received packet (that could be interpreted as a file download
request, as a standard ESA API request, and so on… any of the
possible standard interpretation of ESA WebServer)

This function is meant to be used in scripts programmed to handle the execution of REST API functions.
A coherent setup would include:
- an active event OnWebserverCall;
- an ST script programmed on the event;
- the initialization of the prefix for the identification of the managed API calls (ideally invoked at startup, see
SETRESTAPIPREFIX);
- the management of the API within the script;
- the preparation of the answer string to send to the caller (with this SETRESTAPIRESPONSE).

This function should only be called by the dedicated script: the web server will only send it after the execution
of such a script anyway, and changing it out of context could mess with the transmission of the desired answer.
This is not a fixed rule: in cases where a standard answer is needed for example, it is possible to prepare it
beforehand, and have the web server to use it for every answer, without repeating it every time.
The mechanic is:
- this function is used to set up a response string;
- after a dedicated script terminates, the web server sends the ‘current’ response string to the caller (that
means the last prepared string, regardless when it was prepared).
Special care should only be used in asynchronous preparations of the response, if scripts unrelated to the
OnWebserverCall event are involved.

Calling this function without parameter instead will enable the standard management of the packet in the web
server (it’s the way the invoked script can use to inform the web server that the API was not handled, and that
standard work is still to be done).
Standard work includes management of file download requests, PDF viewer file requests, ESA API execution
requests.
From this point of view, scripts programmed on the OnWebserverCall event are supposed to use this function
to state whether they have already managed the received packet (interpreted as a recognized REST API), or
not.

 ST-Script Guidelines 1.38

 Page 83 of 562

SENDRESTAPIREQUEST

Sends an HTTP(/s) REST API request to a server.

RESULT = SENDRESTAPIREQUEST (TRACE, TYPE, URL, PROXYADD, PROXYUSER, PROXYPWD, DATA, [HEADER1 [… [, HEADER8]]])

input

TRACE : BOOL a flag used to enable debug traces for the given command: TRUE means the
exact command and response exchanged with the server will be traced in the
runtime standard output

TYPE : ANY_INT states the type of request that is being sent; the supported codes are:
0 (RESTGET)
1 (RESTPOST)
2 (RESTPUT)
3 (RESTPATCH)
4 (RESTDELETE)

URL : ANY_STRING the complete URL that has to be accessed with the request;
 might have to include HTTP parameters, if required by the server protocol; for

example, valid URLs could be:
 http://the.server.com

 https://the.server.com/api

 https://the.server.com/api/v2?p1=1&p2=2

PROXYADD : ANY_STRING IP address and port of the proxy;
 expected in the form "ip1.ip2.ip3.ip4:ipport";
 can (and should) be an empty string if not needed
PROXYUSER : ANY_STRING user-name used for the authentication with the proxy;
 can be an empty string if the proxy is not used;
 ignored if PROXYADD is left empty;
 if needed, PROXYUSER and PROXYPWD must both be given
PROXYPWD : ANY_STRING password used for the authentication with the proxy;
 can be an empty string if the proxy is not used;
 ignored if PROXYADD is left empty;
 if needed, PROXYUSER and PROXYPWD must both be given
DATA : ANY_STRING the payload JSon string that might be required by the protocol in PUT, POST or

PATCH requests;
 can be left empty if not needed
HEADER# : ANY_STRING [OPTIONAL] there are up to 8 parameters of this type:
 HEADER1, HEADER2, HEADER3, …, HEADER8
 these parameters are used to specify header/meta information

segments that have to be sent along the request;
 a typical usage case is the specification of the expected response

content type, such as:
 Accept: application/json

 or the specification of authorization data, such as:
 Authorization: Bearer b1094abc0-54a4-3eab-7213-

877142c33fh3

 should NOT be used instead to specify the content type of the
request data (as in “Content-Type: application/json”), since the JSon
format is the standard one expected by this function (when given
through the DATA parameter), and is automatically declared by the
system

output

RESULT : UDINT the numeric result code sent by the server in its response; the codes depend on
the protocol implemented on the server, but HTTP standards usually apply,
such as:

 ST-Script Guidelines 1.38

 Page 84 of 562

 200 success

 404 not found

 500 internal error

 and so on… (see HTTP specifications for details)

This function is used to send requests, as client, to a web server, in a HTTP/S REST API form.
It has a blocking behaviour, and won’t return until the server sends its response (or until an error or a
communication timeout has been recognized).

Along with the HTTP result numeric code directly given in the function return value, this function will store the
(string) payload of the server response in the RESTAPIRESPONSE variable (often with JSon content).
Given the blocking behaviour of the function, this variable content will be immediately ready upon completion.
This variable will be updated by every SENDRESTAPIREQUEST call, regardless its actual return value; useful
information might be included by the server even in error notifications, so finding it containing a valid JSon
segment should not be used as proof that the request was successful.

Note that a function GETRESTAPIRESPONSE exists as well, made to return the exact same value currently held by
the variable RESTAPIRESPONSE. The function is meant to simplify the access to the response string from JavaScript
code implemented in the clients (a usage example can be found below).

Note: this function is currently implemented only for Linux platforms.

 ST-Script Guidelines 1.38

 Page 85 of 562

GETRESTAPIRESPONSE

Retrieves the string sent by a REST API server as response to the last request sent with a SENDRESTAPIREQUEST.

RESPONSE = GETRESTAPIRESPONSE ()

output

RESPONSE : STRING the data string received as response from the server

This function returns exactly the same value already stored in the variable RESTAPIRESPONSE.
It’s meant to simplify the access to the response string from JavaScript code implemented in the clients (see
below).

Note: this function is currently implemented only for Linux platforms.

JavaScript example

execSTScript('SENDRESTAPIREQUEST',function(err, val) {

 if (err)

 alert('SENDRESTAPIREQUEST: an error occured: ' + err);

 else if(val == 200) {

 execSTScript('GETRESTAPIRESPONSE',function(err, val) {

 let response = JSON.parse(val);

 }

 ST-Script Guidelines 1.38

 Page 86 of 562

SETTIMESSYTEM

Changes the time mode used by system outputs.

SETTIMESYSTEM (UTCMODE)

input

UTCMODE : BOOL the time mode that has to be enabled;
 TRUE means UTC times will be used;
 FALSE means local times will be used

The system times mode affects the outputs of the runtime.
Being this function dedicated to the runtime server, the possible outputs are essentially the files exported by
the different runtime modules.

 ST-Script Guidelines 1.38

 Page 87 of 562

GETTIMESYSTEM

Retrieves the time mode currently used by system outputs.

UTCMODE = GETTIMESYSTEM ()

output

UTCMODE : BOOL the time mode currently enabled;
 TRUE means UTC times are being used;
 FALSE means local times are being used

The system times mode affects the outputs of the runtime.
Being this function dedicated to the runtime server, the possible outputs are essentially the files exported by
the different runtime modules.

 ST-Script Guidelines 1.38

 Page 88 of 562

GETNUMCLIENTSWEB

Counts the number of clients currently connected through web server.

NUMBER = GETNUMCLIENTSWEB ()

output

NUMBER : UDINT the number of clients currently connected (in web server mode)

Normally meant to count remote clients connected through generic browsers for reasons not necessarily
related to the runtime itself.

 ST-Script Guidelines 1.38

 Page 89 of 562

GETNUMCLIENTSUI

Counts the number of clients currently connected through web socket.

NUMBER = GETNUMCLIENTSUI ()

output

NUMBER : UDINT the number of clients currently connected (in web socket mode)

Normally meant to count remote clients connected through generic browsers and running the runtime UI client
provided by the runtime integrated web server.

 ST-Script Guidelines 1.38

 Page 90 of 562

GETNUMCLIENTSNET

Counts the number of clients currently connected through network project.

NUMBER = GETNUMCLIENTSNET ()

output

NUMBER : UDINT the number of clients currently connected (in network project mode)

Normally meant to count remote machines connected as client of a network project.

 ST-Script Guidelines 1.38

 Page 91 of 562

LANGUAGEGET

Retrieves the ID of the language currently active in the server runtime.

LANGUAGE = LANGUAGEGET ()

output

LANGUAGE : UDINT the current language identifier;
 this ID is defined as the (base-1) index of the language among those defined in

the current project

 ST-Script Guidelines 1.38

 Page 92 of 562

LANGUAGESET

Activates a new language in the server runtime.

LANGUAGESET (LANGUAGE)

input

LANGUAGE : UDINT the new language identifier;
 this ID is defined as the (base-1) index of the language among those defined in

the current project

 ST-Script Guidelines 1.38

 Page 93 of 562

LANGUAGENEXT

Activates the "next" language in the server runtime.

LANGUAGENEXT ()

The activated language is the one that comes after the current one in the list of the languages configured in the
project.

 ST-Script Guidelines 1.38

 Page 94 of 562

LANGUAGEPREVIOUS

Activates the "previous" language in the server runtime.

LANGUAGEPREVIOUS ()

The activated language is the one that comes before the current one in the list of the languages configured in
the project.

 ST-Script Guidelines 1.38

 Page 95 of 562

GETURL

Retrieves a file from an URL address.

GETURL (URL, FILE, PROXYADD, PROXYUSER, PROXYPWD, SERVERPORT, SERVERUSER, SERVERPWD)

input

URL : ANY_STRING address of file to be transferred;
 should be in form of an URL
FILE : ANY_STRING path and name local destination file

PROXYADD : ANY_STRING IP address and port of the proxy;
 expected in the form "ipaddress:ipport";
 can be an empty string if not needed
PROXYUSER : ANY_STRING user-name used for the authentication with the proxy;
 can be an empty string if the proxy is not used
PROXYPWD : ANY_STRING password used for the authentication with the proxy;
 can be an empty string if the proxy is not used

SERVERPORT : ANY_INT server port
SERVERUSER : ANY_STRING user-name used for the authentication with the server;
 can be an empty string if the server is not used
SERVERPWD : ANY_STRING password used for the authentication with the server;
 can be an empty string if the server is not used

example

GETURL ("http://198.168.100.1/image.jpg", "/home/esa/picture1.jpg",

 "proxy:8080", "PROXYUSER", "PROXYPASSWORD",

 1234, "admin", "admin");

GETURL ("http://198.168.100.2/image.jpg", "/home/esa/picture1.jpg",

 "198.168.99.1:8080", "PROXYUSER", "PROXYPASSWORD",

 0, "", ""); // no server

GETURL ("http://198.168.100.3/image.jpg", "/home/esa/picture1.jpg",

 "", "", "", // no proxy or automatic management

 0, "", ""); // no server

 ST-Script Guidelines 1.38

 Page 96 of 562

GETTICKS

Retrieves the current system ticks counter, in milliseconds.

TICKS = GETTICKS ()

output

TICKS : TIME how long has the machine been operating;
 value in milliseconds resolution

The information is not related to the operativity time of the runtime: it's an information maintained by the
operating system and basically tells "how long ago" the machine itself was switched on.
Can be used to quickly retrieve time markers when only relative measures are needed (this function is faster
than those based on the actual system clock).

 ST-Script Guidelines 1.38

 Page 97 of 562

GETLTICKS

Retrieves the current system ticks counter, in nanoseconds.

TICKS = GETLTICKS ()

output

TICKS : LTIME how long has the machine been operating;
 value in nanoseconds resolution

The information is not related to the operativity time of the runtime: it's an information maintained by the
operating system and basically tells "how long ago" the machine itself was switched on.
Can be used to quickly retrieve time markers when only relative measures are needed (this function is faster
than those based on the actual system clock).

 ST-Script Guidelines 1.38

 Page 98 of 562

SETRTC

Sets a new system date and time.

SETRTC (TIME)

input

TIME : ANY_DATE new time to be set (local time mode);
 the value can be given in different date/time forms; the following types are

supported:
 DATE : sets the new date and retains the current time
 TOD : sets the new time and retains the current date
 LTOD : sets the new time and retains the current date
 DT : sets both date and time
 LDT : sets both date and time

The function only affects the part of the current date/time that have actually been given by the provided
parameter.

 ST-Script Guidelines 1.38

 Page 99 of 562

SETRTC_UTC

Sets a new system date and time.

SETRTC_UTC (TIME)

input

TIME : ANY_DATE new date/time to be set (UTC time mode);
 the value can be given in different date/time forms; the following types are

supported:
 DATE : sets the new date and retains the current time
 TOD : sets the new time and retains the current date
 LTOD : sets the new time and retains the current date
 DT : sets both date and time
 LDT : sets both date and time

The function only affects the part of the current date/time that have actually been given by the provided
parameter.

 ST-Script Guidelines 1.38

 Page 100 of 562

GETRTCTOD

Retrieves the current system time.

TIME = GETRTCTOD ()

output

TIME : TOD the current system time

The time in output is the current LOCAL time and is given in TOD form.

 ST-Script Guidelines 1.38

 Page 101 of 562

GETRTCLTOD

Retrieves the current system time.

TIME = GETRTCLTOD ()

output

TIME : LTOD the current system time

The time in output is the current LOCAL time and is given in LTOD form.

 ST-Script Guidelines 1.38

 Page 102 of 562

GETRTCDATE

Retrieves the current system time.

DATE = GETRTCDATE ()

output

DATE : DATE the current system date

The time in output is the current LOCAL time and is given in DATE form.

 ST-Script Guidelines 1.38

 Page 103 of 562

GETRTCDT

Retrieves the current system time.

TIME = GETRTCDT ()

output

TIME : DT the current system date and time

The time in output is the current LOCAL time and is given in DT form.

 ST-Script Guidelines 1.38

 Page 104 of 562

GETRTCLDT

Retrieves the current system time.

TIME = GETRTCLDT ()

output

TIME : LDT the current system date and time

The time in output is the current LOCAL time and is given in LDT form.

 ST-Script Guidelines 1.38

 Page 105 of 562

GETRTCTOD_UTC

Retrieves the current system time.

TIME = GETRTCTOD_UTC ()

output

TIME : TOD the current system time

The time in output is the current UTC time and is given in TOD form.

 ST-Script Guidelines 1.38

 Page 106 of 562

GETRTCLTOD_UTC

Retrieves the current system time.

TIME = GETRTCLTOD_UTC ()

output

TIME : LTOD the current system time

The time in output is the current UTC time and is given in LTOD form.

 ST-Script Guidelines 1.38

 Page 107 of 562

GETRTCDATE_UTC

Retrieves the current system time.

DATE = GETRTCDATE_UTC ()

output

DATE : DATE the current system date

The time in output is the current UTC time and is given in DATE form.

 ST-Script Guidelines 1.38

 Page 108 of 562

GETRTCDT_UTC

Retrieves the current system time.

TIME = GETRTCDT_UTC ()

output

TIME : DT the current system date and time

The time in output is the current UTC time and is given in DT form.

 ST-Script Guidelines 1.38

 Page 109 of 562

GETRTCLDT_UTC

Retrieves the current system time.

TIME = GETRTCLDT_UTC ()

output

TIME : LDT the current system date and time

The time in output is the current UTC time and is given in LDT form.

 ST-Script Guidelines 1.38

 Page 110 of 562

REFRESHRTC

Align runtime clock to system RTC.

REFRESHRTC ()

The runtime clock (independent from the system RTC) is initialized at startup.
The information used by the clock are not limited to the date/time itself, but include knowledge of the current
time-zone and the related offsets for standard and daylight-saving time.
Under normal conditions, the runtime re-aligns the time at regular (long) intervals, and never change the time-
zone settings.
With this function it is possible to force an immediate refresh of all these time related information. This is
useful in cases where external factors apply changes to the system time, such as time-zone management
scripts, or remote NTP actions.

The alignment will also affect a set of system variables, used to give some information related to the current
time zone and time offsets:
- TIMEZONEOFFSET : the offset, in seconds, between the current time-zone and the GMT;
- TIMEOFFSETSTD : the additional standard offset, between the local time and the UTC
- TIMEOFFSETDST : the additional daylight-saving time offset, between the local time and the UTC
- TIMESTDSTART : the transition date from daylight-saving time to standard time
- TIMEDSTSTART : the transition date from standard time to daylight-saving time

example

// LOCAL times should be identical to the UTC time plus the current time offsets

REFRESHRTC ();

_TRACE (CSTRING (GETRTCDT())); // note that DT is numerically expressed in seconds:

_TRACE (CSTRING (GETRTCDT_UTC())); // adding the offsets directly to the UTC will give the local time

_TRACE (CSTRING (GETRTCDT_UTC() + TIMEZONEOFFSET + TIMEOFFSETDST));

_TRACE (CSTRING (GETRTCTOD())); // TOD instead is numerically expressed in milliseconds:

_TRACE (CSTRING (GETRTCTOD_UTC())); // the offsets must be corrected to be added consistently

_TRACE (CSTRING (GETRTCTOD_UTC() + TIMEZONEOFFSET * 1000 + TIMEOFFSETDST * 1000));

 ST-Script Guidelines 1.38

 Page 111 of 562

UTC_TO_LOCAL

Converts a date/time from UTC to local.

TIMELOCAL = UTC_TO_LOCAL (TIMEUTC)

input

TIMEUTC : ANY_DATE the source (UTC) date/time can be given in different forms; the following
types are supported:

 DT : the exact date/time will be converted
 LDT : the exact date/time will be converted
 TOD : the system applies calculations using the current date
 LTOD : the system applies calculations using the current date

output

TIMELOCAL : ANY_DATE the converted (local) date/time;
 the output time replicates the input one

Note that when only a plain time is provided (if the date is not part of the given parameter type), then the
system automatically assumes that the given time is intended for the current date.

 ST-Script Guidelines 1.38

 Page 112 of 562

LOCAL_TO_UTC

Converts a date/time from local to UTC.

TIMEUTC = LOCAL_TO_UTC (TIMELOCAL)

input

TIMELOCAL : ANY_DATE the source (local) date/time can be given in different forms; the following
types are supported:

 DT : the exact date/time will be converted
 LDT : the exact date/time will be converted
 TOD : the system applies calculations using the current date
 LTOD : the system applies calculations using the current date

output

TIMEUTC : ANY_DATE the converted (UTC) date/time;
 the output time replicates the input one

Note that when only a plain time is provided (if the date is not part of the given parameter type), then the
system automatically assumes that the given time is intended for the current date.

 ST-Script Guidelines 1.38

 Page 113 of 562

GETYEAR

Retrieves the "year" component of a given date.

YEAR = GETYEAR (DATE)

input

DATE : ANY_DATE date from which the year has to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DATE, DT, LDT
 (only date/times that actually contain years are acceptable)

output

YEAR : UINT the year component of the given date/time

 ST-Script Guidelines 1.38

 Page 114 of 562

GETMONTH

Retrieves the "month" component of a given date.

MONTH = GETMONTH (DATE)

input

DATE : ANY_DATE date from which the month has to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DATE, DT, LDT
 (only date/times that actually contain months are acceptable)

output

MONTH : UINT the month component of the given date/time

 ST-Script Guidelines 1.38

 Page 115 of 562

GETDAY

Retrieves the "day" component of a given date.

DAY = GETDAY (DATE)

input

DATE : ANY_DATE date from which the day has to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DATE, DT, LDT
 (only date/times that actually contain days are acceptable)

output

DAY : UINT the day component of the given date/time

 ST-Script Guidelines 1.38

 Page 116 of 562

GETWEEKDAY

Finds the "day of weak" of a given date.

WEEKDAY = GETWEEKDAY (DATE)

input

DATE : ANY_DATE date from which the day of week has to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DATE, DT, LDT
 (only date/times that actually contain dates are acceptable)

output

WEEKDAY : UINT the day of week of the given date/time;
 this is given as a value in the range 0..6
 (0=Sunday, 1=Monday, …, 6=Saturday)

 ST-Script Guidelines 1.38

 Page 117 of 562

GETHOURS

Retrieves the "hours" component of a given time.

HOURS = GETHOURS (TIME)

input

TIME : ANY_DATE time from which the hours have to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DT, LDT, TOD, LTOD
 (only date/times that actually contain hours are acceptable)

output

HOURS : UINT the hours component of the given date/time

 ST-Script Guidelines 1.38

 Page 118 of 562

GETMINUTES

Retrieves the "minutes" component of a given time.

MINUTES = GETMINUTES (TIME)

input

TIME : ANY_DATE time from which the minutes have to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DT, LDT, TOD, LTOD
 (only date/times that actually contain minutes are acceptable)

output

MINUTES : UINT the minutes component of the given date/time

 ST-Script Guidelines 1.38

 Page 119 of 562

GETSECONDS

Retrieves the "seconds" component of a given time.

SECONDS = GETSECONDS (TIME)

input

TIME : ANY_DATE time from which the seconds have to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DT, LDT, TOD, LTOD
 (only date/times that actually contain seconds are acceptable)

output

SECONDS : UINT the seconds component of the given date/time

 ST-Script Guidelines 1.38

 Page 120 of 562

GETMSECONDS

Retrieves the "milliseconds" component of a given time.

MSECONDS = GETMSECONDS (TIME)

input

TIME : ANY_DATE time from which the milliseconds have to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DT, LDT, TOD, LTOD
 (only date/times that actually contain "times" are acceptable);
 note that in case of DT, the result is always 0, since the DT resolution is in

seconds

output

MSECONDS : UINT the milliseconds component of the given date/time
 (this is the decimal part of the seconds expressed in milliseconds)

 ST-Script Guidelines 1.38

 Page 121 of 562

GETNSECONDS

Retrieves the "nanoseconds" component of a given time.

NSECONDS = GETNSECONDS (TIME)

input

TIME : ANY_DATE time from which the nanoseconds have to be extracted;
 despite the 'ANY_DATE' declaration, this parameter can only have one of the

following types:
 DT, LDT, TOD, LTOD
 (only date/times that actually contain "times" are acceptable);
 note that in case of DT, the result is always 0, since the DT resolution is in

seconds

output

NSECONDS : UDINT the nanoseconds component of the given date/time
 (this is the decimal part of the seconds expressed in nanoseconds)

 ST-Script Guidelines 1.38

 Page 122 of 562

MAKETOD

Creates a time value using the given components.

TIME = MAKETOD (HOURS, MINUTES, SECONDS, MILLISECONDS)

input

HOURS : ANY_INT hours component
MINUTES : ANY_INT minutes component
SECONDS : ANY_INT seconds component
MILLISECONDS : ANY_INT milliseconds component

output

TIME : TOD the time of day (TOD) resulting from the provided components

 ST-Script Guidelines 1.38

 Page 123 of 562

MAKELTOD

Creates a time value using the given components.

TIME = MAKELTOD (HOURS, MINUTES, SECONDS, NANOSECONDS)

input

HOURS : ANY_INT hours component
MINUTES : ANY_INT minutes component
SECONDS : ANY_INT seconds component
NANOSECONDS : ANY_INT nanoseconds component

output

TIME : LTOD the time of day (LTOD) resulting from the provided components

 ST-Script Guidelines 1.38

 Page 124 of 562

MAKEDATE

Creates a date value using the given components.

DATE = MAKEDATE (YEAR, MONTH, DAY)

input

YEAR : ANY_INT year component
MONTH : ANY_INT month component
DAY : ANY_INT day component

output

DATE : DATE the date resulting from the provided components

 ST-Script Guidelines 1.38

 Page 125 of 562

MAKEDT

Creates a date/time value using the given components.

TIME = MAKEDT (YEAR, MONTH, DAY, HOURS, MINUTES, SECONDS)

input

YEAR : ANY_INT year component
MONTH : ANY_INT month component
DAY : ANY_INT day component
HOURS : ANY_INT hours component
MINUTES : ANY_INT minutes component
SECONDS : ANY_INT seconds component

output

TIME : DT the date/time (DT) resulting from the provided components

 ST-Script Guidelines 1.38

 Page 126 of 562

MAKELDT

Creates a date/time value using the given components.

TIME = MAKELDT (YEAR, MONTH, DAY, HOURS, MINUTES, SECONDS, NANOSECONDS)

input

YEAR : ANY_INT year component
MONTH : ANY_INT month component
DAY : ANY_INT day component
HOURS : ANY_INT hours component
MINUTES : ANY_INT minutes component
SECONDS : ANY_INT seconds component
NANOSECONDS : ANY_INT nanoseconds component

output

TIME : LDT the date/time (LDT) resulting from the provided components

 ST-Script Guidelines 1.38

 Page 127 of 562

GETCLIENTID

Retrieves the ID of the calling client.

ID = GETCLIENTID ()

output

ID : UDINT the ID (positional index of client in connections list) of the client responsible of
the current script execution

If the script is being executed due to a server call, and no client is involved, then the function returns
0xFFFFFFFF.
Otherwise (a client is involved) one of the following applies.

If matrix-users are in use, then:
- if the client is among those configured in the geographic authorizations' matrix, then the returned ID is the
position of the client in the configured clients list (base-0);
- if the client is a guest, then the ID is assigned at the moment of the connection; the given ID corresponds to
the first free slot, higher than the reserved ones, and within a preconfigured maximum limit.
If level-users are in use, then the behaviour is that of the guest clients above: all clients receive their ID at the
moment of their connection, chosen between 0 and a configured maximum limit.

If too many clients are connected (more than the configured maximum number), then all the "extra" clients will
receive the same ID, equal to the highest possible slot.

 ST-Script Guidelines 1.38

 Page 128 of 562

SETCLIENTDEBUGRIGHTS

Chooses the debugging rights of a given client.

SETCLIENTDEBUGRIGHTS (ID, RIGHTS)

input

ID : UDINT ID of the interested client;
 this parameter is used only in case of "matrix" users; ignored instead in case

of "level" users;
 can be used to specify special selection cases:
 SYSALLCLIENTS (0xFFFFFFFF) can be used to indicate that the selection has to be

applied to all the clients contemporarily (in case of level-users this is the
systematic implicit working mode);

 SYSCALLINGCLIENT (0xFFFFFFFE) can be used to indicate that the selection has to
be applied to the client that requested the execution of the function (possible
only if this client actually exists, not if the function execution originated from
the server);

RIGHTS : BOOL the rights selection;
 TRUE means the given client(s) is authorized to run debugging sessions in its

browser (FALSE if not)

Used to enable or disable debugging permissions for one or more clients.

In case of "level" users, there is no ability to identify (at design time) specific clients, so this operation is always
considered global (the debugging authorization is always meant for all the clients or none of them).
In this case, the 1st function parameter (ID) is ignored.

In case of "matrix" users, clients IDs are configured and known at design time, so dedicated logic can be
programmed.
In this case the 1st function parameter (ID) is meaningful, and can be used to select specific clients.
Programmers are allowed to choose a single client (with given ID), or to extend the selection to all the clients
(SYSALLCLIENTS); also if the script execution originated from a client event, then programmers are allowed to
apply the selection to the calling client itself (SYSCALLINGCLIENT).
If a single client has been selected, and it turned out to be a "guest", then the selection is extended to all the
possible guests (similarly to level-users behaviour, in case of matrix-users guests, the authorization can only be
given to all the guests or no guest at all).

 ST-Script Guidelines 1.38

 Page 129 of 562

GETCLIENTDEBUGRIGHTS

Retrieves the current debugging rights of a given client.

RIGHTS = GETCLIENTDEBUGRIGHTS (ID)

input

ID : UDINT ID of the interested client;
 only meaningful in case of "matrix" users; ignored in case of "level" users;
 SYSALLCLIENTS and SYSCALLINGCLIENT special cases can be used;
 see SETCLIENTDEBUGRIGHTS for extensive details

output

RIGHTS : BOOL the rights selection;
 TRUE means the given client(s) is authorized to run debugging sessions in its

browser (FALSE if not)

Allows to see whether given clients have been granted or rejected the right to execute debugging sessions
within their browser.

The same basic principles described in the SETCLIENTDEBUGRIGHTS about the supported ID parameter values, and
related behaviours and mechanics, are still valid.
Specifically, in case of level-users the authorization retrieved is always a "global" one (currently valid for all the
clients), while in case of matrix-users the authorization could be client-specific. In this last case, keep in mind
that with matrix-users:
- if a "guest" client is targeted, then the authorization retrieved is always the same as that of any other guest;
- if a "global" authorization is asked (SYSALLCLIENTS), then a meaningful value is obtained only if a global

authorization has really been explicitly assigned with a previous call to SETCLIENTDEBUGRIGHTS in SYSALLCLIENTS
mode.

 ST-Script Guidelines 1.38

 Page 130 of 562

GETCLIENTDEBUGSTATE

Finds out whether a given client has ever executed a (legitimate or not) debugging session.

STATE = GETCLIENTDEBUGSTATE (ID)

input

ID : UDINT ID of the interested client;
 only meaningful in case of "matrix" users; ignored in case of "level" users;
 SYSALLCLIENTS and SYSCALLINGCLIENT special cases can be used;
 see SETCLIENTDEBUGRIGHTS for extensive details

output

STATE : UDINT a code describing the debug occurrences for the given client;
 expected values are:

 0 (SYSDEBUGNONE) : nothing (debug-related) ever happened;
 1 (SYSDEBUGREJECTED) : at least a debug session has been denied;
 2 (SYSDEBUGACCEPTED) : at least a debug session has been accepted;
  NOTE: up to clients' implementation: this last case might be

impossible if clients are implemented to only provide
"rejected" events, and not "accepted" ones

 3 (SYSDEBUGREJECTED | SYSDEBUGREJECTED) : (the two events above combined in
'or'); both the events occurred at least once in the
client;

Global requests (implicit with level-users, or explicitly stated in SYSALLCLIENTS mode with matrix-users) are used
to find out whether any of the existing clients has ever tried to debug the application. Targeting specific clients
is possible only in case of matrix-users; limits and behaviours are always those described for
SETCLIENTDEBUGRIGHTS and GETCLIENTDEBUGRIGHTS.

Note that the retrieved information doesn't necessarily report events related to the current instances of the
clients, but simply states that have been recorded from clients' notifications at any time in the current
execution session of the server: different clients might have disconnected and reconnected at runtime, but the
registrations returned by this call still remain.
The reset of the recorded states is only possible by writing the system tags "SYS_ClientDebugState" and
"SYS_AnyClientDebugState" (affecting the 'rejected' conditions).

 ST-Script Guidelines 1.38

 Page 131 of 562

SETCLIENTOFFSCAN

Sets the offscan state of a given client.

SETCLIENTOFFSCAN (ID, STATE)

input

ID : UDINT ID of the interested client;
 usage identical to SETCLIENTDEBUGRIGHTS:
 this parameter is used only in case of "matrix" users; ignored instead in case

of "level" users;
 can be used to specify special selection cases:
 SYSALLCLIENTS (0xFFFFFFFF) can be used to indicate that the selection has to be

applied to all the clients contemporarily (in case of level-users this is the
systematic implicit working mode);

 SYSCALLINGCLIENT (0xFFFFFFFE) can be used to indicate that the selection has to
be applied to the client that requested the execution of the function (possible
only if this client actually exists, not if the function execution originated from
the server);

STATE : BOOL the offscan state selection;
 TRUE means the given client(s) is allowed to communicate with the server;

FALSE if not allowed: in this case the server communication will be cut

Used to enable or disable the communication between the server and one or more clients.
The communication is cut at WebSocket level.
The cut might affect both local and remote clients, and servers sharing tags in a network project.

Just like the mentioned SETCLIENTDEBUGRIGHTS, in case of "level" users, there is no ability to identify (at design
time) specific clients, so this operation is always considered global (the offscan state is always meant for all the
clients).
In this case, the 1st function parameter (ID) is ignored.

In case of "matrix" users, clients IDs are configured and known at design time, so dedicated logic can be
programmed.
In this case the 1st function parameter (ID) is meaningful, and can be used to select specific clients.
Programmers are allowed to choose a single client (with given ID), or to extend the selection to all the clients
(SYSALLCLIENTS); also if the script execution originated from a client event, then programmers are allowed to
apply the selection to the calling client itself (SYSCALLINGCLIENT).
If a single client has been selected, and it turned out to be a "guest", then the selection is extended to all the
possible guests (similarly to level-users behaviour, in case of matrix-users guests, the state can only be set for
all the guests as a whole).

 ST-Script Guidelines 1.38

 Page 132 of 562

GETCLIENTOFFSCAN

Retrieves the current offscan state of a given client.

STATE = GETCLIENTOFFSCAN (ID)

input

ID : UDINT ID of the interested client;
 only meaningful in case of "matrix" users; ignored in case of "level" users;
 SYSALLCLIENTS and SYSCALLINGCLIENT special cases can be used;
 see SETCLIENTOFFSCAN for extensive details

output

STATE : BOOL the current offscan state;
 TRUE means the given client(s) is currently in offscan (FALSE if not)

Allows to see whether given clients are currently operating in offscan mode (with their communication with the
server cut or limited).

The same basic principles described in the SETCLIENTOFFSCAN about the supported ID parameter values, and
related behaviours and mechanics, are still valid.
Specifically, in case of level-users the state retrieved is always a "global" one (currently valid for all the clients),
while in case of matrix-users the state could be client-specific. In this last case, keep in mind that with matrix-
users:
- if a "guest" client is targeted, then the state retrieved is always common to all the guests;
- if a "global" state is asked (SYSALLCLIENTS), then a meaningful response is obtained only if a global state has

really been explicitly set with a previous call to SETCLIENTOFFSCAN in SYSALLCLIENTS mode.

 ST-Script Guidelines 1.38

 Page 133 of 562

SETCLIENTKEYBURST

Enables or disables the clients ability to collect streams of keys sent in burst by physical keyboards.
The functionality is meant to manage codes sent by barcode readers operating in keyboard emulation mode.

SETCLIENTKEYBURST (ID, STATE)

input

ID : UDINT ID of the interested client;
 usage rules are similar to the functions above, but with different special cases:
 - specific clients IDs are only supported in case of "matrix" users; if provided in

case of "level" users, the IDs are simply ignored and the function behaves as if
invoked for a SYSALLCLIENTS case (see below);

 - the following codes can be used to specify special selection cases (these
codes are always acceptable, either in "matrix" or "level" mode):

 SYSALLCLIENTS (0xFFFFFFFF) can be used to indicate that the selection has to be
applied to all the clients contemporarily;

 SYSCALLINGCLIENT (0xFFFFFFFE) can be used to indicate that the selection has to
be applied to the client that requested the execution of the function (possible
only if this client actually exists, not if the function execution originated from
the server);

 SYSLOCALCLIENTS (0xFFFFFFFD) can be used to indicate that the selection has to
be applied to all the clients currently connected to the sever in localhost
(usually one only, but multiple local clients are supported as well);

STATE : BOOL the key-bursts management state selection;
 TRUE means the given client(s) is allowed/required to collect key-bursts;

FALSE otherwise

Used to enable or disable the key-bursts collection activity of targeted clients.
The clients with this feature enabled are supposed to monitor keys pressure events, identify those received in
burst (at least a minimum number of keys with minimal delay in between), and store the collected streams in
dedicated system variables.

As mentioned above, special selection cases are always supported:
SYSALLCLIENTS always extends the selection to all the clients (whether they are already connected or not),
SYSCALLINGCLIENT always targets the client that invoked the script execution (provided such client exists),
SYSLOCALCLIENTS always extends the selection to all the clients currently connected in localhost (only those
already connected, not those that might connect in the future).
If a specific client ID is given instead, the selection is only allowed in case of matrix-users. In case of level-users,
there is no ability to identify specific clients at design time, so this kind of selection is always changed into a
global (SYSALLCLIENTS) request.
Also, if a specific client has been selected (matrix-users mode), and it turned out to be a "guest", then the
selection is extended to all the possible guests (similarly to level-users behaviour, in case of matrix-users guests
there is no possibility to pre-identify specific clients, so the state can only be set for all the guests as a whole).

 ST-Script Guidelines 1.38

 Page 134 of 562

GETCLIENTKEYBURST

Retrieves the current key-burst management state of a given client.
The state is initialized at FALSE for all clients, and can be changed with SETCLIENTKEYBURST calls.

STATE = GETCLIENTKEYBURST (ID)

input

ID : UDINT ID of the interested client;
 can be the ID of a specific client (supported only in case of "matrix" users), or

the code of a special selection (supported special cases are SYSALLCLIENTS,

SYSCALLINGCLIENT and SYSLOCALCLIENTS);
 see SETCLIENTKEYBURST for extensive details

output

STATE : BOOL the current key-burst management state;
 TRUE means the management is currently enabled in the given client(s);

FALSE if not

Allows to see whether given clients are currently managing key-bursts or not.

The same basic principles described in the SETCLIENTKEYBURST about the supported ID parameter values, and
related behaviours and mechanics, are still valid.

 ST-Script Guidelines 1.38

 Page 135 of 562

SAVESCREEN

Save in a designated file an image of whatever is currently displayed on the server screen.

SAVESCREEN (FILENAME)

input

FILENAME : ANY_STRING name of the destination file;
 the format of the created file is implicitly taken from the extension specified

in the given name; supported extensions/formats are:
 BMP, PNG, JPG

 ST-Script Guidelines 1.38

 Page 136 of 562

BEEP

Sounds a buzzer beep.
Executed by the runtime on the server machine.

BEEP (DURATION, FREQUENCY, SYNC)

input

DURATION : ANY_INT the duration of the beep;
 can be given as a plain numeric value, expressed in milliseconds, or with a

native duration type, such as a TIME or LTIME value
FREQUENCY : ANY_INT the frequency of the sound, in Hertz;
 depending on the HMI hardware in use, this parameter might be ignored

(some embedded panels buzzers are limited to a fixed frequency);
SYNC : BOOL TRUE if the script must be kept blocked for the whole duration of the sound;
 FALSE if the script execution can proceed even while the sound is active

 ST-Script Guidelines 1.38

 Page 137 of 562

BEEPON

Switches on a buzzer sound.
This functionality is limited to embedded platforms, and is executed on the server machine.

BEEPON (FREQUENCY)

input

FREQUENCY : ANY_INT [OPTIONAL] the frequency of the sound, in Hertz;
 depending on the HMI hardware in use, this parameter might be

ignored (some panels buzzers have a fixed frequency)

The sound will remain active until a subsequent BEEPOFF or BEEP command is given.
This command is used in cases where the script itself is meant to handle the duration of the sound.

 ST-Script Guidelines 1.38

 Page 138 of 562

BEEPOFF

Switches off a buzzer sound.
This functionality is limited to embedded platforms, and is executed in the server machine.

BEEPOFF ()

Expected to be used after a BEEPON command, in cases where the script itself is meant to handle the duration of
the sound.

 ST-Script Guidelines 1.38

 Page 139 of 562

LIGHTUP

Increases the brightness of the display.
This functionality is limited to embedded platforms, and is executed in the server machine.

LIGHTUP ()

 ST-Script Guidelines 1.38

 Page 140 of 562

LIGHTDOWN

Decreases the brightness of the display.
This functionality is limited to embedded platforms, and is executed in the server machine.

LIGHTDOWN ()

 ST-Script Guidelines 1.38

 Page 141 of 562

LIGHTSET

Sets the brightness of the display to a given level.
This functionality is limited to embedded platforms, and is executed in the server machine.

LIGHTSET (BRIGHTNESS)

input

BRIGHTNESS : ANY_NUM the needed brightness level;
 can be a precise level (integer in the range implemented by the hardware),
 or a percentage (floating point) of the supported maximum

Since different HMI hardware support different ranges of levels, this function allows a management of all the
panels in a homogeneous way:
- if the BRIGHTNESS parameter is given as an integer value (one of the ANY_INT family type), then it is treated as

a precise level value; programmers are supposed to know the exact range supported by the panel in use (see
LIGHTGETMAX);

- if the BRIGHTNESS parameter is given as a floating point value (one of the ANY_REAL family type), then its value
is supposed to be in the range 0÷100 and is treated as a percentage of the range known by the runtime

 ST-Script Guidelines 1.38

 Page 142 of 562

LIGHTGET

Retrieves the current level value of the brightness of the display.

BRIGHTNESS = LIGHTGET ()

output

BRIGHTNESS : LREAL the current brightness level;
 the returned value is in the range 0÷100 and shows the current level as a

percentage, between a ‘switched off’ state (0) and the maximum
brightness supported by the hardware (100)

Note that the functions LIGHTSET, LIGHTUP and LIGHTDOWN (can) work with absolute brightness levels, where each
step can be bigger or smaller than a percentage point.
This means that is possible and normal to face situations in which a level is set as an absolute value, then an
UP/DOWN in requested, and finally, when read, the percentage difference doesn’t match the number of
UP/DOWN steps.

 ST-Script Guidelines 1.38

 Page 143 of 562

LIGHTGETMAX

Retrieves the maximum level value of the brightness of the display supported by the hardware.

MAXIMUM = LIGHTGETMAX ()

output

MAXIMUM : UDINT the maximum brightness level;
 the returned value is the absolute limit of the range implemented by the

hardware light dimming functionality

Different embedded HMI hardware will return different limits.
PCs don’t support the dimming functionality, and will always return 0.

example

VAR

 absolute : UDINT;

 percentage : REAL;

END_VAR;

absolute := LIGHTGETMAX (); // a 7” imx6 panel will return 32

percentage := 40.0;

LIGHTSET (percentage); // the same panel is now set to 12 (40/100*32 = 12.8)

percentage := LIGHTGET (); // the same panel will return 37.5 (12/32*100)

absolute := 16;

LIGHTSET (absolute);

percentage := LIGHTGET (); // the same panel will return 50.0 (16/32*100)

LIGHTUP ();

percentage := LIGHTGET (); // the same panel will return 53.125 (17/32 = 50+100/32)

 ST-Script Guidelines 1.38

 Page 144 of 562

SHOWTASKBAR

Shows or hides the system desktop TaskBar.

SHOWTASKBAR (SHOW)

output

SHOW : BOOL TRUE to show the TaskBar
 FALSE to hide the TaskBar

This function is only effective in Windows (with standard Explorer desktop).

 ST-Script Guidelines 1.38

 Page 145 of 562

SETHHLEDSTATE

Switches on/off the led of a Handheld panel.

SETHHLEDSTATE (LED, STATE)

output

LED : UDINT ID of the interested LED
 (IDs are defined in the project’s compiled leds configuration)
STATE: BOOL New state for the given led;
 TRUE to switch it ON, FALSE to switch it OFF

This function is only effective on Handheld panels, and only in case of projects that explicitly enable the leds
management.
It is ignored in case of different platforms (Windows) or panels.

 ST-Script Guidelines 1.38

 Page 146 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the system management:

Runtime identification:

RT_PLATFORM type UDINT
 access R

gives a numeric code usable to identify the type of hardware platform
where the runtime is running;
information is stored in groups of 4 bits each:
the 1st digit (less significant 4 bits) can be:
 0x00 (SYSARM) : the machine is an embedded ARM-based hardware
 0x01 (SYSPC) : the machine is a PC
 0x0F (SYSUNK) : the machine hardware is unknown
the 2nd digit can be:
 0x00 (SYSWINDOWS) : the platform is based on a Windows operating system
 0x01 (SYSLINUX) : the platform is based on a Linux operating system
 0x0F (SYSUNK) : the operating system is unknown

RT_WORKMODE type UDINT
 access R

gives a numeric code usable to identify the current working mode of the
runtime;
the expected possible values are:
 0 (SYSFULLSYSTEM) : both client and server modules are loaded; the loaded

client will provide the project pages window
 2 (SYSSERVERONLY) : only the server modules are loaded; the server runs in

background or console; no window is created; supposed to be
used by clients implementing their own window

 3 (SYSSTANDALONE) : only the server modules are loaded; a basic window is
provided to keep the server alive as stand-alone application

In the current systems configuration, only the SYSSERVERONLY mode should
happen

RT_SIMULATION type BOOL
 access R

states whether the runtime is currently running in (offline) simulation mode
(TRUE) or not (FALSE);
the simulation flag only states the ability of the runtime to work online with
external devices; no other functionality is limited

RT_VERSION type STRING
 access R

gives a version code, in string form, of the current implementation of the
server runtime;
structured in 3 levels, the format is "major.minor.progress"
starting from “1.0.1”; the version progress should follow the runtime
development itself

RT_VERSION_MAJOR type UINT
 access R

gives the numeric value of the 'major' level of the runtime version;
see RT_VERSION above

RT_VERSION_MINOR type UINT

 ST-Script Guidelines 1.38

 Page 147 of 562

 access R
gives the numeric value of the 'minor' level of the runtime version;
see RT_VERSION above

RT_VERSION_PROGRESS type UINT
 access R

gives the numeric value of the 'progress' level of the runtime version;
see RT_VERSION above

ST_VERSION type STRING
 access R

gives a version code, in string form, of the current implementation of the ST
scripting engine;
normally set to the same version as the present document (see this
document history chapter for evolution details)

RT_SESSION type UDINT
 access R

gives a numeric identifier of the current execution session of the server
runtime; this code is randomly generated by the runtime every time it is
executed;
it's the code that is normally used by clients to identify server sessions after
communication losses

 ST-Script Guidelines 1.38

 Page 148 of 562

Errors management:

ERRNO type ULINT
 access R/W

gives the code of the last potentially blocking error encountered by the
scripts;
by default, blocking errors halt the execution of a script; in several cases
though they can be intercepted and handled:
if the option ST_OPTION HANDLE_ERRORS is set, then the errors won't result in
scripts terminations; their code will be stored in this variable instead;

to handle the errors:
- ST_OPTION HANDLE_ERRORS allows to handle errors through this variable;
- ST_OPTION BLOCKING_ERRORS resets the default blocking behaviour;
to reset the error code:
- use the function ERRORRESET (will reset ERRMSG as well);
- manually clear the variable (ERRNO := 0);
to inspect the meaning of error code:
- use ERRMSG to retrieve a description text of the error in ERRNO;
- use ERRORGETMESSAGE to retrieve a description of any error code;
- use ERRORGETMODULE to retrieve the name of the involved runtime module

errors that can be handled include:
- assignments to unreachable variables
- errors from evaluations of expressions in assignments
- faults executing embedded key functions
- faults executing user defined functions
there are errors though that will never be trappable; examples are:
- any logic or syntactic error identified at validation time
- errors from evaluation of expressions used as controls in decisional

constructs

ERRMSG type WSTRING
 access R/W

gives a textual description of the error currently stored in ERRNO (see above
for details);
can be cleared manually (ERRMSG := '') or calling the function ERRORRESET (will
reset ERRNO as well)

FXRESULT type ULINT
 access R/W

gives the result of the execution of the last called embedded key function
(meaning all the functions described in this document);
0 means the last function execution was successful;
any other value identifies an error instead;
its value can be manually reset (FXRESULT := 0);
as already stated, to inspect the error codes:
- use ERRORGETMESSAGE to retrieve a description text;
- use ERRORGETMODULE to retrieve the name of the involved runtime module

 ST-Script Guidelines 1.38

 Page 149 of 562

Clock:

TIMEZONEOFFSET type DINT
 access R

the base offset, in seconds, between the current time-zone time, and the
UTC time;
the value is initialized at startup and then changed only upon explicit calls of
the REFRESHRTC function

TIMEOFFSETSTD type DINT
 access R

an additional offset, in seconds, applied to the current local time during
standard time days (see TIMEOFFSETDST too);
for example, during standard time days, the current local time is equal to
the current UTC time + TIMEZONEOFFSET + TIMEOFFSETSTD;
the value is initialized at startup and then changed only upon explicit calls of
the REFRESHRTC function

TIMEOFFSETDST type DINT
 access R

an additional offset, in seconds, applied to the current local time during
daylight-saving days (see TIMEOFFSETSTD too);
for example, during daylight-saving time days, the current local time is equal
to the current UTC time + TIMEZONEOFFSET + TIMEOFFSETDST;
the value is initialized at startup and then changed only upon explicit calls of
the REFRESHRTC function

TIMESTDSTART type DT
 access R

the starting date of the ‘standard’ time for the current year (transition date
from daylight-saving time to standard time); see TIMEDSTSTART too;
the value is initialized at startup and then changed only upon explicit calls of
the REFRESHRTC function

TIMEDSTSTART type DT
 access R

the starting date of the ‘daylight-saving’ time for the current year (transition
date from standard time to daylight-saving time); see TIMESTDSTART too;
the value is initialized at startup and then changed only upon explicit calls of
the REFRESHRTC function

System:

RESTAPIRESPONSE type STRING
 access R

used to store the data string received from a server as response to a
SENDRESTAPIREQUEST call;
updated at every call, not only upon success

 ST-Script Guidelines 1.38

 Page 150 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods, or checking values from variables or methods results:

symbolic value relevant methods

SYSRUNASYNCUNIQUE 0 RUNAPPLICATION
SYSRUNASYNCFREE 1 RUNAPPLICATION
SYSRUNBLOCKING 2 RUNAPPLICATION

SYSBLANKS 0xFFFFFFFF SPLIT, TRIM, LTRIM, RTRIM

SYSALLCLIENTS 0xFFFFFFFF GET/SETCLIENTDEBUGRIGHTS/STATE, GET/SETCLIENTOFFSCAN, GET/SETCLIENTKEYBURST
SYSCALLINGCLIENT 0xFFFFFFFE GET/SETCLIENTDEBUGRIGHTS/STATE, GET/SETCLIENTOFFSCAN, GET/SETCLIENTKEYBURST
SYSLOCALCLIENTS 0xFFFFFFFD GET/SETCLIENTKEYBURST
SYSDEBUGNONE 0 GETCLIENTDEBUGSTATE
SYSDEBUGREJECTED 1 GETCLIENTDEBUGSTATE
SYSDEBUGACCEPTED 2 GETCLIENTDEBUGSTATE

SYSUNK 0x0F RT_PLATFORM
SYSARM 0 RT_PLATFORM
SYSPC 1 RT_PLATFORM
SYSWINDOWS 0 RT_PLATFORM
SYSLINUX 1 RT_PLATFORM

SYSFULLSYSTEM 0 RT_WORKMODE
SYSSERVERONLY 2 RT_WORKMODE
SYSSTANDALONE 3 RT_WORKMODE

RESTGET 0 SENDRESTAPIREQUEST
RESTPOST 1 SENDRESTAPIREQUEST
RESTPUT 2 SENDRESTAPIREQUEST
RESTPATCH 3 SENDRESTAPIREQUEST
RESTDELETE 4 SENDRESTAPIREQUEST

 ST-Script Guidelines 1.38

 Page 151 of 562

5. COMMON - FILES

Files paths conventions

An initial note regarding the system behaviour with regards to the interpretation of the files paths and names,
shared by all the files related implemented functions.

The paths resolution conventions are as follows:
- if a file path+name starts with "\" or "/" or (on windows) with a unit specification (e.g. "c:"), then it's

considered an absolute path, and it's kept as it is; this model can be used to target anything on a given
machine;

- if a file path+name starts with "$" and the symbolic name of a known conventional system folder (e.g.
"$RESOURCES"), then everything following it is considered relative to the actual folder as declared in the
ESA.INI file (see the list below); this model can be used to target resources located in specific system folders,
without the need to know the exact location of the folder itself;

- if a file path+name is NOT absolute (as defined above) and does NOT start with a known system folder
identifier, then it is considered relative to the "LOG" folder declared in the ESA.INI file; this model can be
used to work with files in a folder and subfolders known to be freely accessible on the machine (also note
that the "LOG" folder can be explicitly given as system conventional folder with the symbolic "$LOG").

Regarding the conventional system folders, the following symbolics are supported by the runtime:

 $RESOURCES

 $LOG

 $CONFIG

 $IMAGES

 $FONTS

 $HTML

 $USB (the path of the 1st detected USB device; in case there is no USB device, redirects on $LOG; used in cases
where a path must be resolved somehow, even if the desired device is not connected)

 $USB# (the path of the #th detected USB device; if the device doesn't exist, the path remains empty; used in cases
where the exact path of a specific device is required; usable to detect the existence of a device)

They must be given in uppercase and must be placed at the beginning of a file path+name string.
Everything not perfectly matching the listed symbolics and the rules above, will not be recognized as a system
folder identifier, and will most likely be treated as a plain piece of string of a relative path.

Finally note that in specific deployments, or from some point onwards, some of the models above might be cut
off and rendered unusable, in order to limit the accessibility of specific (or all) machines.

 ST-Script Guidelines 1.38

 Page 152 of 562

FILE_EXIST

Checks whether a file with given name and path exists.
Can be used to detect both files and directories.

EXIST = FILE_EXIST (NAME)

input

NAME : ANY_STRING path and name of the target file;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

EXIST : BOOL TRUE if the file exists
 FALSE if it doesn't

 ST-Script Guidelines 1.38

 Page 153 of 562

FILE_COPY

Copies a file.

FILE_COPY (SOURCE, DESTINATION, OVERWRITE)

input

SOURCE : ANY_STRING path and name of the source file;
 must not be empty; see 'Files paths conventions' at the beginning of this section

for notes about paths resolution rules
DESTINATION : ANY_STRING path and name of the destination file;
 must not be empty; see 'Files paths conventions' at the beginning of this section

for notes about paths resolution rules
OVERWRITE : BOOL TRUE if an already existing destination can be overwritten;
 FALSE if overwriting is forbidden

The destination folder must exist.
Both the source and the destination elements must be accessible and free.
If the destination already exists, the OVERWRITE parameter states whether it can be overwritten or not; if not,
the function fails.

 ST-Script Guidelines 1.38

 Page 154 of 562

FILE_DELETE

Removes a file.

FILE_DELETE (NAME)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

 ST-Script Guidelines 1.38

 Page 155 of 562

FILE_RENAME

Renames or moves a file.

FILE_RENAME (SOURCE, DESTINATION)

input

SOURCE : ANY_STRING path and name of the source file;
 must not be empty; see 'Files paths conventions' at the beginning of this section

for notes about paths resolution rules
DESTINATION : ANY_STRING path and name of the destination file;
 must not be empty; see 'Files paths conventions' at the beginning of this section

for notes about paths resolution rules

When the names are given, the use of absolute paths is recommended, since different file systems use
different policies with respect to the concept of current/relative path. When relative paths are used, the
programmer is expected to know the behaviour of the file system in use.

The function can be used to actually move a file, depending on the given DESTINATION parameter.
If the same path is given for source and destination, then the function acts as a plain rename; if different paths
are given, then the file is moved from the source to the destination one.
If only names are given, then the system assumes the 'current' path has to be used, and inconsistencies might
arise between different platforms and file systems.

 ST-Script Guidelines 1.38

 Page 156 of 562

FILE_CREATEDIR

Creates a new directory.

FILE_CREATEDIR (NAME)

input

NAME : ANY_STRING path and name of the directory;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

 ST-Script Guidelines 1.38

 Page 157 of 562

FILE_DELETEDIR

Removes a directory.
A recursive operation can be requested.

FILE_DELETEDIR (NAME, RECURSIVE)

input

NAME : ANY_STRING path and name of the directory;
 must not be empty; see 'Files paths conventions' at the beginning of this section

for notes about paths resolution rules
RECURSIVE : BOOL TRUE if even the content of the directory has to be (recursively) removed

If no recursivity is enforced, then the given directory is removed only if it's already empty; the operation fails
otherwise.
If recursivity is required instead, then even the content of the directory is removed; recursively, even
subdirectories are treated accordingly.

 ST-Script Guidelines 1.38

 Page 158 of 562

FILE_GETSIZE

Retrieves the size of a file.
The file must not be currently opened by anyone, scripts included.

SIZE = FILE_GETSIZE (NAME)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

SIZE : ULINT size in bytes of the specified file

Not to be confused with the FILE_GETLENGTH, used on opened streams.

 ST-Script Guidelines 1.38

 Page 159 of 562

FILE_SETSIZE

Sets a new size for a file.

FILE_SETSIZE (NAME, SIZE)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this section

for notes about paths resolution rules
SIZE : ANY_UNSIGNED new file size

If the file is currently bigger than the required size, then it is truncated.
If it is currently smaller, then it is filled with 0s bytes up to the new size.
If the file doesn't exist at all, then a new one is created and filled with the proper amount of 0s.

 ST-Script Guidelines 1.38

 Page 160 of 562

FILE_GETTIMECREATION

Retrieves the creation date and time of a given file.

TIME = FILE_GETTIMECREATION (NAME)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

TIME : LDT the file creation date and time

 ST-Script Guidelines 1.38

 Page 161 of 562

FILE_GETTIMEWRITE

Retrieves the last write date and time of a given file.

TIME = FILE_GETTIMEWRITE (NAME)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

TIME : LDT the file last write's date and time

 ST-Script Guidelines 1.38

 Page 162 of 562

FILE_GETTIMEACCESS

Retrieves the last access date and time of a given file.

TIME = FILE_GETTIMEACCESS (NAME)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

TIME : LDT the file last access date and time

 ST-Script Guidelines 1.38

 Page 163 of 562

FILE_ISDIRECTORY

Checks whether a given name is identifying a file or a directory.

DIR = FILE_ISDIRECTORY (NAME)

input

NAME : ANY_STRING path and name of the file or directory;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

DIR : BOOL TRUE if the parameter identifies a directory
 FALSE if it doesn't identify a directory;

note that if 'special' files (such as fifo, blocks, devices, sockets, and all the different
elements that Linux adds to the file system) are forcibly given, they would fall
under the 'FALSE' category

 ST-Script Guidelines 1.38

 Page 164 of 562

FILE_FINDFIRST

Starts a files browsing session and returns the 1st matching file name.

NAME = FILE_FINDFIRST (PATH)

input

PATH : ANY_STRING path and name for the search;
 the path specifies the location where files have to be searched;
 the name specifies the match key for the files to be returned;
 can include all the usual wildcards ('*', '?');
 wildcards are allowed in the name part only, not in the path;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

NAME : WSTRING the name of the 1st file found;
 an EMPTY string is returned if there are no matching files;
 both files and folders can be returned;
 conventional '.' and '..' folders are ignored;

'special' files (such as fifo, blocks, devices, sockets, and all the different elements
that Linux adds to the file system) are ignored

Only one browsing session can exist at any given time.
This function can be used even if an old browsing session is already in progress: in this case the old one is
automatically closed first (see FILE_FINDCLOSE for explicit close requests).

When this function returns a valid file name, the following variables can be used to retrieve additional
information about the browsed entry:

FILE_FOUNDNAME replicates the name of the last browsed file
FILE_FOUNDISDIR states whether the last retrieved name is a directory (TRUE) or a file (FALSE)
FILE_FOUNDSIZE the size of the last browsed file
FILE_FOUNDTIME the write time of the last browsed file

Note that the given variables are meant to retain the values coming from the last successful browsing function
invocation; in case of errors or empty strings returned by FILE_FINDFIRST or FILE_FINDNEXT, these variables values
will remain unchanged.

example

VAR

 filename : WSTRING [256];

END_VAR;

filename := FILE_FINDFIRST (searchpath + '*');

WHILE (filename <> '') DO

 IF (FILE_FOUNDISDIR) THEN

 // handle the matching directory

 ELSE

 // handle the matching file

 // do whatever needed with FILE_FOUNDSIZE, FILE_FOUNDTIME, FILE_FOUNDNAME

 END_IF;

 filename := FILE_FINDNEXT ();

END_WHILE;

FILE_FINDCLOSE ();

 ST-Script Guidelines 1.38

 Page 165 of 562

 ST-Script Guidelines 1.38

 Page 166 of 562

FILE_FINDNEXT

Proceeds with the files browsing session in progress and return the next matching file name.

NAME = FILE_FINDNEXT ()

output

NAME : WSTRING the name of the next file found;
 an EMPTY string is returned if there are no more matching files;
 both files and folders can be returned;
 conventional '.' and '..' folders are ignored;

'special' files (such as fifo, blocks, devices, sockets, and all the different elements
that Linux adds to the file system) are ignored

Can only be used if there actually is a session in progress: a browsing session must have already been opened
with (a successful) FILE_FINDFIRST (and not closed yet with FILE_FINDCLOSE).

When this function returns a valid file name, the following variables can be used to retrieve additional
information about the browsed entry:

FILE_FOUNDNAME replicates the name of the last browsed file
FILE_FOUNDISDIR states whether the last retrieved name is a directory (TRUE) or a file (FALSE)
FILE_FOUNDSIZE the size of the last browsed file
FILE_FOUNDTIME the write time of the last browsed file

Note that the given variables are meant to retain the values coming from the last successful browsing function
invocation; in case of errors or empty strings returned by FILE_FINDFIRST or FILE_FINDNEXT, these variables values
will remain unchanged.

See a usage example given along with the FILE_FINDFIRST description.

 ST-Script Guidelines 1.38

 Page 167 of 562

FILE_FINDCLOSE

Closes the files browsing session currently in progress.

FILE_FINDCLOSE ()

Can only be used if there actually is a session in progress: a browsing session must have already been opened
with (a successful) FILE_FINDFIRST.

See a usage example given along with the FILE_FINDFIRST description.

 ST-Script Guidelines 1.38

 Page 168 of 562

FILE_AVAILABLESPACE

Retrieves the amount of available space on a given storage unit.

SPACE = FILE_AVAILABLESPACE (PATH)

input

PATH : ANY_STRING a path of any folder of the target storage unit;
 used to identify the unit itself;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

SPACE : ULINT the available space (in bytes) on the identified storage unit

 ST-Script Guidelines 1.38

 Page 169 of 562

FILE_ABSOLUTEPATH

Returns an absolute file path and name, starting from a potentially relative path, or from a path containing
system keys.

ABSOLUTE = FILE_ABSOLUTEPATH (PATH)

input

PATH : ANY_STRING path and name of a file or folder;
 the path can be either relative or (already) absolute, and can start with system keys

such as $RESOURCES or $LOG;
 must not be empty; see 'Files paths conventions' at the beginning of this section for

notes about paths resolution rules

output

ABSOLUTE : WSTRING the complete absolute path and name derived from the given one

The function is meant to resolve full path+name strings.
If only paths have to be treated, make sure to terminate them with ‘\’ or ‘/’ characters.
For example, if interested in knowing the plain content of a system key, the correct parameter would be
something like “$LOG\” (not just “$LOG”, that would not be recognized as a path segment).

example

 _TRACE (FILE_ABSOLUTEPATH('C:\A\B\File.txt')); // returns "C:\A\B\File.txt"

 _TRACE (FILE_ABSOLUTEPATH('File.txt')); // returns "C:\ESA\RTW\LOG\File.txt"

 _TRACE (FILE_ABSOLUTEPATH('\File.txt')); // returns "\File.txt"

 _TRACE (FILE_ABSOLUTEPATH('$$RESOURCES\File.txt')); // returns "C:\ESA\RTW\RESOURCES\File.txt"

 _TRACE (FILE_ABSOLUTEPATH('$$RESOURCES\')); // returns "C:\ESA\RTW\RESOURCES\"

 _TRACE (FILE_ABSOLUTEPATH('$$RESOURCES')); // returns "C:\ESA\RTW\LOG\$RESOURCES” (see above)

 _TRACE (FILE_ABSOLUTEPATH('\')); // returns "\"

 _TRACE (FILE_ABSOLUTEPATH('')); // empty content not allowed

 ST-Script Guidelines 1.38

 Page 170 of 562

FILE_OPEN

Opens a file stream.
Returns a numeric identifier, expected in all subsequent calls to API functions for the same file stream.

FILE = FILE_OPEN (NAME, ACCESS, CREATION)

input

NAME : ANY_STRING path and name of the file;
 must not be empty; see 'Files paths conventions' at the beginning of this

section for notes about paths resolution rules
ACCESS : ANY_UNSIGNED a code stating the access mode;
 supported codes are:
 0 (FILEREAD) enables read only
 1 (FILEWRITE) enables write only
 2 (FILEREADWRITE) enables both read and write
CREATION : ANY_UNSIGNED a code stating how to behave with regard to file creation;
 supported codes are:
 0 (FILEDONTCREATE) never create a new file
 1 (FILERESETANDCREATE) always restart with a new empty file
 2 (FILECREATEIFNEEDED) keep existing files and create if needed

output

FILE : UDINT a numeric identifier;
 used to identify the opened file in all the subsequent functions calls

The returned identifier is needed in the calls to any possible directive for the same file stream.
The identifier is unique among all the currently opened files. After closure (FILE_CLOSE) the identifier is free and
might be reused for future streams.

This function affects the variable FILE_NUMBER, meant to count the number of open files.

About the meaning of the supported flags:

if ACCESS = FILEREAD
then the file can never be changed in any way, and never created or reset,
so the only possible value for CREATION is FILEDONTCREATE;

if ACCESS enables write as well (FILEWRITE or FILEREADWRITE),
then all the supported creation modes can be given;
in case of FILEDONTCREATE, the file must exist, and the operation fails otherwise; when opened the content is
preserved;
in case of FILERESETANDCREATE, an existing file would be wiped out; regardless, a new empty file is recreated;
in case of FILECREATEIFNEEDED, if the file already exists its content is preserved; otherwise a new empty one is
created.

 ST-Script Guidelines 1.38

 Page 171 of 562

FILE_CLOSE

Closes a file stream.
After a file has been closed, further calls to file stream API functions with the given identifier would result in
failure.

FILE_CLOSE (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

The file must have been previously opened with a call to FILE_OPEN.
If needed, a cache flush is automatically invoked before closing; see FILE_FLUSH for an overview on the matter.

This function affects the variable FILE_NUMBER, meant to count the number of open files.

 ST-Script Guidelines 1.38

 Page 172 of 562

FILE_FLUSH

Flushes on disk all the pending cache buffers associated with the file content.

FILE_FLUSH (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

The file must have been previously opened with a call to FILE_OPEN.

The file cache buffers are implemented in order to keep write accesses to the flash memory at the minimum, to
preserve the hardware durability.

Other than explicitly invoked with this method, files cache buffers can be automatically flushed in several
situations as well:
- every call to any of the following functions automatically causes a flush:

FILE_CLOSE, FILE_REWIND, FILE_SEEK, FILE_READxxx (any kind of read);
- if the script system variable FILE_AUTOFLUSH is set (TRUE, see the list of available variables below), then flushes

are continuously done by the system: pending cache buffers are never maintained, so that the file is always
synchronized with its content in the storage.

 ST-Script Guidelines 1.38

 Page 173 of 562

FILE_REWIND

Relocates the file pointer at the beginning of the file (the file pointer is the object that defines the starting
position of the next read or write operation on the file stream).

FILE_REWIND (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

The file must have been previously opened with a call to FILE_OPEN.
If needed, a cache flush is automatically invoked before the movement; see FILE_FLUSH for an overview on the
matter.

Meant for ease of use, it's the exact same thing as:

 FILE_SEEK (file, 0, FILESTART);

(see FILE_SEEK below)

 ST-Script Guidelines 1.38

 Page 174 of 562

FILE_SEEK

Moves the file pointer to the given position (the file pointer is the object that defines the starting position of
the next read or write operation on the file stream).

FILE_SEEK (FILE, OFFSET, START)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
OFFSET : ANY_INT offset of the movement, in bytes, from the given starting position
START : ANY_UNSIGNED identification of the movement starting position;
 supported codes are:
 0 (FILESTART) start counting the offset from the beginning of the file
 1 (FILECURRENT) start counting the offset from the current position
 2 (FILEEND) start counting the offset from the end of the file

The file must have been previously opened with a call to FILE_OPEN.
If needed, a cache flush is automatically invoked before the movement; see FILE_FLUSH for an overview on the
matter.

About the behaviour of the supported movements:
the OFFSET can be positive or negative; if positive, the pointer moves forward from the given starting position; if
negative the pointer moves backward of the given amount of bytes;
if the START is FILESTART, then only positive offsets should be given; otherwise both positive and negative offsets
are equally allowed;
offsets that take the file pointer to an absolute negative position (meaning movements of the pointer to a
position that precedes the beginning of the file), are clipped to the beginning of the file itself;
offsets that take the file pointer to a position that exceeds the current file size (meaning movements of the
pointer beyond the end of the file), are actually effective: subsequent read operations would fail with an EOF
indication of course, but write requests would be allowed; in this last case the system would automatically fill
the file room between its old end and the new write start (a warning though: different file systems could
behave inconsistently with this regard, and the actual values of the filler bytes could be unpredictable; this
practice should be avoided when this is not acceptable).

 ST-Script Guidelines 1.38

 Page 175 of 562

FILE_ISEOF

Checks whether the given file stream has reached its termination;
the condition is set after a read operation actively tried to read past the current end of the file.

EOF = FILE_ISEOF (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

EOF : BOOL TRUE if the end has been reached;
 FALSE otherwise

The file must have been previously opened with a call to FILE_OPEN.

example

VAR

 fd : UDINT;

 bval : BYTE;

END_VAR;

fd := FILE_OPEN ('FileName', FILEREAD, FILEDONTCREATE);

bval := FILE_READBYTE (fd);

WHILE (FILE_ISEOF(fd) = FALSE) DO

 // use <bval>

 bval := FILE_READBYTE (fd);

END_WHILE;

FILE_CLOSE (fd);

 ST-Script Guidelines 1.38

 Page 176 of 562

FILE_GETLENGTH

Retrieves the length of the current content of an opened file.

LENGTH = FILE_GETLENGTH (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

LENGTH : ULINT current length (in bytes) of the file

The file must have been previously opened with a call to FILE_OPEN.
Not to be confused with the FILE_GETSIZE, used on regular unopened files.

 ST-Script Guidelines 1.38

 Page 177 of 562

FILE_GETPOSITION

Retrieves the position of the file pointer of an opened file stream;
the position is the offset in bytes, from the beginning of the file, where the next read or write operation would
take place.

POSITION = FILE_GETPOSITION (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

POSITION : ULINT the current position (in bytes from the beginning of the file) of the file pointer

The file must have been previously opened with a call to FILE_OPEN.

 ST-Script Guidelines 1.38

 Page 178 of 562

FILE_WRITEENCODING

Writes an encoding marker (UNICODE or uTF8) at the beginning of a (text) file.

FILE_WRITEENCODING (FILE, CODE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
CODE : ANY_UNSIGNED the code of the new text encoding
 possible codes are:
 0 (FILEANSI)
 1 (FILEUNICODE)
 2 (FILEUTF8)

The file must have been previously opened with a call to FILE_OPEN.

The UNICODE marker amounts to a conventional couple of bytes (0xFE, 0xFF) written at the beginning of a text
file to declare that the content of the file will be encoded in UNICODE.
The UTF8 marker amounts to a conventional sequence of 3 bytes (0xBF, 0xBB, 0xEF) written at the beginning of
a text file to declare that the content of the file will be encoded in UTF8.
Regarding the ANSI instead: there are no ANSI markers. Text files without a UNICODE or a UTF8 marker will be
implicitly considered to be encoded in ANSI; calling this method with a FILEANSI CODE will simply do nothing.

This method is expected to be used on text files only, as soon as they are created, in order to be effective.
The markers must not be preceded by anything in the file; using this method when the file pointer is not
positioned at the beginning of the file will result in failure.

After this method is used the file will be treated accordingly: all the string-oriented read and write operations
will automatically handle the given encoding.
Interrogating the file with a FILE_GETENCODING (or later with a FILE_READENCODING) will allow to obtain the
encoding code specified here.

Overwriting the marker of an already written file might result in unexpected behaviours of the involved data.

example

VAR

 fd : UDINT;

END_VAR;

fd := FILE_OPEN ('FileName', FILEWRITE, FILERESETANDCREATE);

FILE_WRITEENCODING (fd, FILEUNICODE);

...

FILE_CLOSE (fd);

 ST-Script Guidelines 1.38

 Page 179 of 562

FILE_READENCODING

Reads from the beginning of an opened file the marker of the used text encoding.

CODE = FILE_READENCODING (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

CODE : UDINT the code of the recognized text encoding
 possible returned codes are:
 0 (FILEANSI)
 1 (FILEUNICODE)
 2 (FILEUTF8)

The file must have been previously opened with a call to FILE_OPEN.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

This method is expected to be used on text files only, as soon as they are opened for read, in order to be
effective.
The marker is expected to exist at the beginning of text files only; using this method when the file pointer is not
positioned at the beginning of the file will result in failure.
After the reading, the marker has been taken into account and skipped by the file pointer; this means the file
pointer will be set on the 1st byte of ANSI files, on the 3rd byte of UNICODE files, and on the 4th byte of UTF8
files.

After this method is used and the file is recognized to be designed in the declared way, the file content will be
treated accordingly: all the string-oriented read and write operations will automatically handle the given
encoding.

example

VAR

 fd : UDINT;

END_VAR;

fd := FILE_OPEN ('FileName', FILEREAD, FILEDONTCREATE);

FILE_READENCODING (fd);

...

FILE_CLOSE (fd);

 ST-Script Guidelines 1.38

 Page 180 of 562

FILE_SETENCODING

Forces a new encoding type for an opened text file.
The new code doesn't affect the content of the file in any way (nothing is read or written): no initial encoding
marker is involved in the operation.

FILE_SETENCODING (FILE, CODE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
CODE : ANY_UNSIGNED the code of the new text encoding
 possible codes are:
 0 (FILEANSI)
 1 (FILEUNICODE)
 2 (FILEUTF8)

The file must have been previously opened with a call to FILE_OPEN.

This instruction can be repeatedly executed for the same file; it allows the creation of files, with or without
encoding marker, containing texts automatically encoded with heterogeneous styles.

 ST-Script Guidelines 1.38

 Page 181 of 562

FILE_GETENCODING

Obtains the identifier of the text encoding enabled on an opened file.
The encoding must have already been determined someway (with a FILE_WRITEENCODING in case of newly created
files, or with a FILE_READENCODING on reopened files, or with a FILE_SETENCODING on any file). In absence of any of
these calls, the file is considered to have a plain ANSI encoding.

CODE = FILE_GETENCODING (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

CODE : UDINT the code of the recognized text encoding
 possible returned codes are:
 0 (FILEANSI)
 1 (FILEUNICODE)
 2 (FILEUTF8)

The file must have been previously opened with a call to FILE_OPEN.

 ST-Script Guidelines 1.38

 Page 182 of 562

FILE_READBYTE

Reads a single byte from an opened file stream.

VALUE = FILE_READBYTE (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

VALUE : BYTE the value of the acquired byte

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled).
An EOF condition is raised though: programmers should ALWAYS check the result of a FILE_ISEOF after EVERY
read operation to know if the request actually succeeded and the obtained value is from the file. In failure
cases the returned VALUE should be 0, but programmers must NOT rely on this information to detect EOF
conditions.

 ST-Script Guidelines 1.38

 Page 183 of 562

FILE_READWORD

Reads a single word (2 bytes) from an opened file stream.

VALUE = FILE_READWORD (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

VALUE : WORD the value of the acquired word

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled).
An EOF condition is raised though: programmers should ALWAYS check the result of a FILE_ISEOF after EVERY
read operation to know if the request actually succeeded and the obtained value is from the file. In failure
cases the returned VALUE should be 0, but programmers must NOT rely on this information to detect EOF
conditions.
If the EOF happened halfway, the return might come up with a 'partial' value set.

 ST-Script Guidelines 1.38

 Page 184 of 562

FILE_READDWORD

Reads a double word (4 bytes) from an opened file stream.

VALUE = FILE_READDWORD (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

VALUE : DWORD the value of the acquired double word

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled).
An EOF condition is raised though: programmers should ALWAYS check the result of a FILE_ISEOF after EVERY
read operation to know if the request actually succeeded and the obtained value is from the file. In failure
cases the returned VALUE should be 0, but programmers must NOT rely on this information to detect EOF
conditions.
If the EOF happened halfway, the return might come up with a 'partial' value set.

 ST-Script Guidelines 1.38

 Page 185 of 562

FILE_READLWORD

Reads a long word (8 bytes) from an opened file stream.

VALUE = FILE_READLWORD (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

VALUE : LWORD the value of the acquired long word

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled).
An EOF condition is raised though: programmers should ALWAYS check the result of a FILE_ISEOF after EVERY
read operation to know if the request actually succeeded and the obtained value is from the file. In failure
cases the returned VALUE should be 0, but programmers must NOT rely on this information to detect EOF
conditions.
If the EOF happened halfway, the return might come up with a 'partial' value set.

 ST-Script Guidelines 1.38

 Page 186 of 562

FILE_READBUFFER

Reads a buffer in form of an array of bytes from an opened file stream.

VALUE = FILE_READBUFFER (FILE, LENGTH)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
LENGTH : ANY_UNSIGNED the number of bytes to read

output

VALUE : ANY values of the acquired buffer;
 the buffer is returned as an array of BYTEs,
 with the number of elements equal to the requested LENGTH

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled).
An EOF condition is raised though: programmers should ALWAYS check the result of a FILE_ISEOF after EVERY
read operation to know if the request actually succeeded and the obtained value is from the file. In failure
cases the returned VALUE should be an array filled with 0s, but programmers must NOT rely on this information
to detect EOF conditions.

In these cases, if the EOF happened halfway, the returned buffer might be partially filled: the first bytes might
contain the last piece of file, while the last bytes might remain untouched (filled with 0s).
The function FILE_GETREADLEN can be used to retrieve the number of bytes acquired with the last read directive:
it will return the number of bytes actually stored in the FILE_READBUFFER output array.

See a usage example given along with the FILE_GETREADLENGTH description.

 ST-Script Guidelines 1.38

 Page 187 of 562

FILE_READSTRING

Reads a string of a given maximum length from an opened file stream.

VALUE = FILE_READSTRING (FILE, LENGTH)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
LENGTH : ANY_UNSIGNED maximum length (in characters) of the read string

output

VALUE : ANY_STRING the acquired string;
 could be either a simple STRING (in case of ANSI encoding)
 or a WSTRING (in case of UNICODE or UTF8 encoding)

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

The read string is expected to be stored in the file according to the known encoding mode; the proper number
of bytes per character is acquired. The given string LENGTH limit is expressed in characters, not bytes.
The acquisition from the file stream terminates after the maximum number of characters have been read, or
when the end of file has been reached.
The given string length is a maximum; it is possible to obtain valid shorter strings if the end of file is
encountered.
This function should be treated carefully: since the operation doesn't take into account the actual values of the
characters acquired, it is possible to read even characters that would normally break the string or make it
inconsistent (for example the returned string could contain new lines, or could contain NUL characters that
could make it unusable). It is programmer responsibility to use the function in environment where these
conditions are controlled or acceptable.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled). The returned string together with
the EOF condition (see FILE_ISEOF) can be used by the programmer to properly detect the EOF and handle file
acquisition loops.
If the file pointer starts still within the boundaries of the file content, and the given string length limit takes it
past the end, then a shorter string is returned and the EOF condition flag is raised;
if the file pointer is exactly at the end of the file, then the function returns an empty string, and the EOF
condition flag is raised.

 ST-Script Guidelines 1.38

 Page 188 of 562

FILE_READLINE

Reads a string of a given maximum length from an opened file stream.
Almost identical to the FILE_READSTRING above, if not for the fact that the strings acquisitions automatically
terminate when suitable line terminators are read from the file.

VALUE = FILE_READLINE (FILE, LENGTH)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
LENGTH : ANY_UNSIGNED maximum length (in characters) of the read string

output

VALUE : ANY_STRING the acquired string;
 could be either a simple STRING (in case of ANSI encoding)
 or a WSTRING (in case of UNICODE or UTF8 encoding)

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for reading.
If needed, a cache flush is automatically invoked before the read; see FILE_FLUSH for an overview on the matter.

The read string is expected to be stored in the file according to the known encoding mode; the proper number
of bytes per character is acquired. The given string length limit is expressed in characters, not bytes.
The acquisition from the file stream terminates after the maximum number of characters have been read, or
when a line terminator has been read, or when the end of file has been reached (whichever condition comes
first).
The given string length is a maximum; it is possible to obtain valid shorter strings if the end of file or a line
termination are encountered.

About the line termination characters, all the following characters, or combination of characters, are
considered valid terminations:
- 0x00 (NUL)
- 0x0A (a lone LF)
- 0x0D (a lone CR)
- 0x0A 0x0D (LF+CR)
- 0x0D 0x0A (CR+LF)

The termination (new line) characters are NOT included in the returned strings.

In case of reading past the end of the file, the function doesn't formally fail (no standard error is raised so that
the script can continue regardless the errors management model enabled). The returned string together with
the EOF condition (see FILE_ISEOF) can be used by the programmer to properly detect the EOF and handle file
acquisition loops.
If the file pointer starts still within the boundaries of the file content, and the given string length limit takes it
past the end, then a shorter string is returned and the EOF condition flag is raised;
if the file pointer is exactly at the end of the file, then the function returns an empty string, and the EOF
condition flag is raised.

 ST-Script Guidelines 1.38

 Page 189 of 562

FILE_WRITE

Writes a value (any kind of value) in an opened file stream.

FILE_WRITE (FILE, VALUE [, SIZE])

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN
VALUE : ANY value to be written in the file
SIZE : ANY_UNSIGNED [OPTIONAL] size (in bytes) of the part VALUE written in the file;

can be used to limit the number of bytes actually written in cases
where the data is passed in buffers (likely arrays) that might either be
full or not;
if this parameter is missing, then the whole VALUE is written;
giving a SIZE bigger than the passed VALUE has no effect: the write is
limited to the actual VALUE size anyway;
this parameter is ignored in case of strings or arrays of strings, where
each single element value can only be limited by its internal
terminator

The file must have been previously opened with a call to FILE_OPEN.
The file must be opened for writing.

The function writes in the file exactly the number of bytes required by the type of the given value.
Any type of value can be passed to the function, included arrays, structures and strings.
Note that the structures are binary types, so even if they contain some form of string field, these are not
converted with text encoding.
Plain strings and arrays of strings are managed instead: their value is converted according to the enabled text
encoding.

The file stream might be automatically flushed if the FILE_AUTOFLUSH property demands so. Otherwise written
values might remain in memory cache buffers for an undefined amount of time, until enough data has been
bufferized, or until a flush is required, either by explicit calls or by implicit automatic mechanics. See FILE_FLUSH
for details on the matter.

 ST-Script Guidelines 1.38

 Page 190 of 562

FILE_GETREADLENGTH

Retrieves the number of bytes that were acquired with the last call to a read function.

LENGTH = FILE_GETREADLENGTH (FILE)

input

FILE : UDINT file identifier returned by a previous call to FILE_OPEN

output

LENGTH : ANY_UNSIGNED file identifier returned by a previous call to FILE_OPEN

The file must have been previously opened with a call to FILE_OPEN.

The returned value is affected by calls to any of the available READ methods (FILE_READBYTE, FILE_READWORD,
FILE_READDWORD, FILE_READLWORD, FILE_READBUFFER, FILE_READSTRING, FILE_READLINE).

This function is designed to be used in conjunction with FILE_ISEOF checks in loop situations: data can be
repeatedly extracted in blocks from files, while continuously checking for the EOF and accessing only the
portion of data actually retrieved. In particular, usage with FILE_READBUFFER is effective, since the mechanic
above allows for acquisitions of data in large blocks with the ability to recognize the end and the size of the last
piece of file.

example

VAR

 fd : UDINT;

 index : LINT;

 block : ARRAY [100] OF BYTE;

END_VAR;

fd := FILE_OPEN ('FileName', 0, 0);

REPEAT

 block := FILE_READBUFFER (fd, 100); // size must match the array declaration

 FOR index := 0 TO (FILE_GETREADLENGTH(fd) - 1) DO // better used with STATIC_FOR to avoid stress

 // do something with <block[index]>

 END_FOR;

UNTIL (FILE_ISEOF(fd));

END_REPEAT;

FILE_CLOSE (fd);

 ST-Script Guidelines 1.38

 Page 191 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the files management:

FILE_NUMBER type UDINT
 access R

gives the number of files currently opened by scripts

FILE_AUTOFLUSH type BOOL
 access R/W

states whether writes in file streams have to be immediately and
automatically flushed on the storage (TRUE), or cache buffers can be used to
minimize the storage write accesses (FALSE);
see FILE_FLUSH for an overview about file flush needs

FILE_FOUNDNAME type WSTRING
 access R

replicates the name of the last file (or directory) successfully browsed and
returned by a FILE_FINDFIRST or FILE_FINDNEXT;
the returned information is updated (only) every time a browsing function
succeeds; failed calls or calls returning empty names to notify the end of the
elements list don't affect the storage, meant to preserve the last valid entry;
the information persists even after the browsing session is closed

FILE_FOUNDSIZE type ULINT
 access R

gives the size (in bytes) of the last file (or directory) successfully browsed and
returned by a FILE_FINDFIRST or FILE_FINDNEXT;
directories have a size of 0 bytes;
see FILE_FOUNDNAME for hints

FILE_FOUNDTIME type LDT
 access R

gives the last write time of the last file (or directory) successfully browsed and
returned by a FILE_FINDFIRST or FILE_FINDNEXT;
times are returned in the form (local or UTC) given by the file system in use;
normally UTC is the way;
see FILE_FOUNDNAME for hints

FILE_FOUNDISDIR type BOOL
 access R

checks whether the last file (or directory) successfully browsed and returned
by a FILE_FINDFIRST or FILE_FINDNEXT, is a file or a directory:
FALSE means it's a file,
TRUE means it's a directory;
see FILE_FOUNDNAME for hints

 ST-Script Guidelines 1.38

 Page 192 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

FILEREAD 0 FILE_OPEN
FILEWRITE 1 FILE_OPEN
FILEREADWRITE 2 FILE_OPEN

FILEDONTCREATE 0 FILE_OPEN
FILERESETANDCREATE 1 FILE_OPEN
FILECREATEIFNEEDED 2 FILE_OPEN

FILESTART 0 FILE_SEEK
FILECURRENT 1 FILE_SEEK
FILEEND 2 FILE_SEEK

FILEANSI 0 FILE_WRITEENCODING, FILE_READENCODING, FILE_SETENCODING, FILE_GETENCODING
FILEUNICODE 1 FILE_WRITEENCODING, FILE_READENCODING, FILE_SETENCODING, FILE_GETENCODING
FILEUTF8 2 FILE_WRITEENCODING, FILE_READENCODING, FILE_SETENCODING, FILE_GETENCODING

FILECSV 0 $$$_EXPORT, $$$_RESET
FILEPDF 1 $$$_EXPORT, $$$_RESET

 ST-Script Guidelines 1.38

 Page 193 of 562

6. COMMON - SERIAL

COM_OPEN

Opens a communication channel on a serial port.

PORT = COM_OPEN (COM, BAUD, DATA, PARITY, STOP)

input

COM : ANY_INT the number of the COM port that must be opened;
 must be a COM# available on the server machine
BAUD : ANY_INT the baud rate for the communication channel;
 must be the exact number of bps;
 the possible values are:
 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
DATA : ANY_INT number of data bits;
 the following values and constants can be used:
 5 (COMDATA5)
 6 (COMDATA6)
 7 (COMDATA7)
 8 (COMDATA8)
PARITY : ANY_INT type of parity check;
 the following values and constants can be used:
 0 (COMPARITYNONE)
 1 (COMPARITYODD)
 2 (COMPARITYEVEN)
 3 (COMPARITYMARK)
 4 (COMPARITYSPACE)
STOP : ANY_INT number of stop bits;
 the following values and constants can be used:
 0 (COMSTOP1)
 1 (COMSTOP1_5) (not supported in Linux)
 2 (COMSTOP2)

output

PORT : UDINT a server-generated identifier for the opened port;
this ID is expected to be used in any further call to COM functions aimed to use the
same port

The returned PORT identifier is needed in the calls to any further directive for the same COM port.
The identifier is unique among all the currently opened ports. After closure (COM_CLOSE) the identifier is free
and might be reused.

Serial ports are opened by default to behave in a standard way; in particular, hardware flow controls are
disabled. To change the state of automatic flow controls, use the function COM_FLOW.

This function affects the variable COM_NUMBER, meant to count the number of open serial connections.

 ST-Script Guidelines 1.38

 Page 194 of 562

COM_CLOSE

Closes an opened serial port.

COM_CLOSE (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

The serial port must have been previously opened with a call to COM_OPEN.

After a port has been closed, further calls to COM API functions with the given identifier would result in failure.

After a port has been closed, its identifier is released and might be reused as identifier for ports opened in the
future.

This function affects the variable COM_NUMBER, meant to count the number of open serial connections.

 ST-Script Guidelines 1.38

 Page 195 of 562

COM_FLOW

Sets up the flow controls of an opened serial port.

COM_FLOW (PORT, RTS, CTS, DTR, DSR)

input

PORT : UDINT the port identifier; obtained by a previous call to COM_OPEN
RTS : ANY_INT RTS flow control;
 the following values and constants can be used:
 0 (COMRTSDISABLE)
 1 (COMRTSENABLE)
 2 (COMRTSHANDSHAKE)
 3 (COMRTSTOGGLE)
CTS : ANY_INT CTS handshaking;
 the following values and constants can be used:
 0 (COMCTSOFF)
 1 (COMCTSON)
DTR : ANY_INT DTR flow control;
 the following values and constants can be used:
 0 (COMDTRDISABLE)
 1 (COMDTRENABLE)
 2 (COMDTRHANDSHAKE)
DSR : ANY_INT DSR handshaking;
 the following values and constants can be used:
 0 (COMDSROFF)
 1 (COMDSRON)

As soon as the serial port is opened (COM_OPEN) all the automatic flow controls are disabled by default.
Use this function to enable the RTS/CTS or DTR/DSR flow control as needed.

Note: in Linux platforms only RTS/CTS flow controls are supported.
Also, only a plain enable/disable is allowed (there is no behaviour management at all).
Therefore the only meaningful parameter here is RTS, and only the values COMRTSDISABLE and COMRTSENABLE are
actually used. Everything else is simply ignored.

 ST-Script Guidelines 1.38

 Page 196 of 562

COM_ISOPEN

Checks whether a port with given identifier is currently open.

STATE = COM_ISOPEN (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

output

STATE : BOOL TRUE if the port is currently open;
 FALSE otherwise

The serial port identifier is supposed to be one obtained by a previous call to a COM_OPEN.
The function will tell whether the port is still open or not.
Invalid IDs will be undistinguishable from closed ports.

 ST-Script Guidelines 1.38

 Page 197 of 562

COM_DATALENGTH

Retrieves the number of bytes currently available for reading from an opened serial port.

LENGTH = COM_DATALENGTH (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

output

LENGTH : UDINT the number of available bytes

The serial port must have been previously opened with a call to COM_OPEN.

The function won't block and won't wait for anything: it will just return the number of bytes already pending in
the port buffer.

 ST-Script Guidelines 1.38

 Page 198 of 562

COM_READBYTE

Reads a single byte from an opened serial port.

BYTE = COM_READBYTE (PORT, TIMEOUT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in case

nothing is available for reading yet

output

BYTE : BYTE the value of the acquired byte

The serial port must have been previously opened with a call to COM_OPEN.

If the function successfully reads a byte from the serial port, its value is returned, and the variable
COM_RXLENGTH will state that 1 byte has been read.
If the function succeeds in the serial port management, but nothing is found to be available for reading within
the given timeout, then the function returns 0, and the variable COM_RXLENGTH will state that 0 bytes have been
read.

In other words, script error states can be used to check whether the port management failed at system level,
but the variable COM_RXLENGTH should be used to see if anything was actually read from the port.
Another way to handle the same issue: this function could be used together with the COM_DATALENGTH:
availability of bytes in buffer could be checked beforehand, so that the read would be called only if actually
necessary.

example

VAR

 com : UDINT;

 cbt : BYTE := 0;

 eos : BYTE := 120; // the example loop will stop when this byte is received

END_VAR;

com := COM_OPEN (1, 115200, COMDATA8, COMPARITYNONE, COMSTOP1);

WHILE cbt <> eos DO

 // 1
st

 way: test availability using COM_DATALENGTH function

 SLEEP (10);

 IF COM_DATALENGTH(com) > 0 THEN

 cbt := COM_READBYTE (com, 0);

 // do whatever needed with the acquired <cbt>

 END_IF;

 // 2
nd

 way: test availability using COM_RXLENGTH variable

 cbt := COM_READBYTE (com, 10);

 IF COM_RXLENGTH > 0 THEN

 // do whatever needed with the acquired <cbt>

 END_IF;

END_WHILE;

COM_CLOSE (com);

 ST-Script Guidelines 1.38

 Page 199 of 562

COM_READBUFFER

Reads a sequence of bytes from an opened serial port.

VALUE = COM_READBUFFER (PORT, SIZE, TIMEOUT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN
SIZE : ANY_INT the maximum number of bytes to get from the port;
 this value is currently limited to 65536 bytes (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in case

nothing is available for reading yet; can be 0

output

VALUE : ANY despite the generic declaration, the result is always an array of bytes;
 the size of the array is defined by the input parameter SIZE

The serial port must have been previously opened with a call to COM_OPEN.

In case of successful execution, the function returns an array of bytes with the given SIZE. Not necessarily all the
bytes of the array have to be filled up with read bytes: some might be reset to 0.
The variable COM_RXLENGTH will count the number of bytes read and returned.

The given SIZE is the number of elements of the returned array, and the maximum number of bytes acquired
from the serial port. The key word is 'maximum': the function waits for something to be available for reading
from the port; as soon as something is available, it is acquired and returned:
- if nothing is found to be available within the given TIMEOUT, then nothing is read, the returned array is

completely reset, and the variable COM_RXLENGTH is set to 0;
- if any number of bytes within the given SIZE are found to be available, then all these bytes are acquired and

returned, the remaining part of the array remains reset, and the variable COM_RXLENGTH is set to that exact
number of bytes;

- if more than SIZE bytes are available, then only the first SIZE ones are read and returned; the variable
COM_RXLENGTH is set to SIZE.

At any given time this function should be able to read as many bytes as stated by COM_DATALENGTH.

example

VAR

 com, cbt : UDINT; car : ARRAY [100] OF BYTE;

END_VAR;

com := COM_OPEN (1, 115200, COMDATA8, COMPARITYNONE, COMSTOP1);

WHILE <loop is needed> DO

 car := COM_READBUFFER (com, 100, 1000); // wait up to 1 second to get something to read

 IF COM_RXLENGTH > 0 THEN

 FOR cbt := 0 TO COM_RXLENGTH-1 DO

 // do whatever needed with the acquired bytes <car[cbt]>

 END_FOR;

 END_IF;

END_WHILE;

COM_CLOSE (com);

 ST-Script Guidelines 1.38

 Page 200 of 562

COM_WRITE

Writes data on an opened serial port.

COM_WRITE (PORT, VALUE [, SIZE])

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN
VALUE : ANY the value that has to be sent on the serial port;

this could be a value of any type;
the transmitted data will be the exact binary image of the given value;
the programmer is supposed to know the binary format of the used types

SIZE : ANY_INT [OPTIONAL] size (in bytes) of the part of VALUE sent on the serial port;
can be used to limit the number of bytes actually transmitted in cases
where the data is passed in buffers (likely arrays) that might either be
full or not;
if this parameter is missing, then the whole VALUE is written;
giving a SIZE bigger than the passed VALUE has no effect: the
transmission is limited to the actual VALUE size anyway

The serial port must have been previously opened with a call to COM_OPEN.

The function sends exactly the number of bytes required by the type of the given value.
Any type of value can be passed to the function, included arrays, structures and strings.
The programmer must be aware of the exact format, size and endianity of the written data.
Note that even strings follow the same rule: plain STRINGs are sent with 1 byte per character, while WSTRINGs
are sent using 2 bytes per character.
A degree of management on plain strings is implemented actually: whereas arrays of strings are sent like binary
chunks of data (one byte for each byte of data buffer), plain strings are in fact terminated at their NUL
terminator (see example below).

The variable COM_TXLENGTH will count the number of bytes sent by a successful execution of this function.

example

VAR

 com : UDINT;

 cbt : BYTE;

 clw : LWORD;

 cab : ARRAY [100] OF BYTE;

 cas : ARRAY [10] OF STRING [5];

 cst : WSTRING [10];

END_VAR;

com := COM_OPEN (1, 115200, COMDATA8, COMPARITYNONE, COMSTOP1);

COM_WRITE (com, cbt); // 1 byte sent

COM_WRITE (com, clw); // 8 bytes sent

COM_WRITE (com, cab); // 100 bytes sent

COM_WRITE (com, cas); // 10*(5+1) = 60 bytes sent

cst := 'abc'; COM_WRITE (com, cst); // 3*2 = 6 bytes sent

COM_CLOSE (com);

 ST-Script Guidelines 1.38

 Page 201 of 562

COM_CLEAR

Clears buffers content and states of an opened serial port.

COM_CLEAR (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

The serial port must have been previously opened with a call to COM_OPEN.

Error states will be reset, output buffers will be flushed, and input buffers will be cleared.
Newly opened ports are forcefully set in a clear state.

 ST-Script Guidelines 1.38

 Page 202 of 562

COM_GETCTS

Retrieves the current state of the CTS signal of an opened serial port.

STATE = COM_GETCTS (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

output

STATE : BOOL the current signal state

The serial port must have been previously opened with a call to COM_OPEN.

 ST-Script Guidelines 1.38

 Page 203 of 562

COM_GETDSR

Retrieves the current state of the DSR signal of an opened serial port.

STATE = COM_GETDSR (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

output

STATE : BOOL the current signal state

The serial port must have been previously opened with a call to COM_OPEN.

 ST-Script Guidelines 1.38

 Page 204 of 562

COM_GETRING

Retrieves the current state of the RING signal of an opened serial port.

STATE = COM_GETRING (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

output

STATE : BOOL the current signal state

The serial port must have been previously opened with a call to COM_OPEN.

 ST-Script Guidelines 1.38

 Page 205 of 562

COM_GETRLSD

Retrieves the current state of the RLSD signal of an opened serial port.

STATE = COM_GETRLSD (PORT)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN

output

STATE : BOOL the current signal state

The serial port must have been previously opened with a call to COM_OPEN.

Note: in Linux platforms this signal is not supported.

 ST-Script Guidelines 1.38

 Page 206 of 562

COM_SETRTS

Sets the state of the RTS signal of an opened serial port.

COM_SETRTS (PORT, STATE)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN
STATE : ANY_INT the new signal state;
 ideally only boolean values should be used;
 any non-zero value is interpreted as a 'true'

The serial port must have been previously opened with a call to COM_OPEN.

 ST-Script Guidelines 1.38

 Page 207 of 562

COM_SETDTR

Sets the state of the DTR signal of an opened serial port.

COM_SETDTR (PORT, STATE)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN
STATE : ANY_INT the new signal state;
 ideally only boolean values should be used;
 any non-zero value is interpreted as a 'true'

The serial port must have been previously opened with a call to COM_OPEN.

 ST-Script Guidelines 1.38

 Page 208 of 562

COM_SET485

Enables the 485 mode on an opened serial port.

COM_SET485 (PORT, MODE)

input

PORT : UDINT the port identifier, obtained by a previous call to COM_OPEN
MODE : ANY_INT the port type mode;
 possible codes are:
 0 (COMMODE232) : 485 is disabled
 1 (COMMODE485) : 485 is enabled

The serial port must have been previously opened with a call to COM_OPEN.

 ST-Script Guidelines 1.38

 Page 209 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the serial ports management:

COM_NUMBER type UDINT
 access R

gives the number of serial ports currently opened by scripts

COM_RXLENGTH type UDINT
 access R

gives the number of bytes acquired by the last successful execution of a read
function (see COM_READBYTE and COM_READBUFFER);
failed calls won't affect this variable;
the given value could be 0 in case the invoked function found nothing to read
from the serial port

COM_TXLENGTH type UDINT
 access R

gives the number of bytes transmitted by the last successful execution of a
write function (see COM_WRITE);
failed calls won't affect this variable

 ST-Script Guidelines 1.38

 Page 210 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

COMDATA5 5 COM_OPEN
COMDATA6 6 COM_OPEN
COMDATA7 7 COM_OPEN
COMDATA8 8 COM_OPEN

COMPARITYNONE 0 COM_OPEN
COMPARITYODD 1 COM_OPEN
COMPARITYEVEN 2 COM_OPEN
COMPARITYMARK 3 COM_OPEN
COMPARITYSPACE 4 COM_OPEN

COMSTOP1 0 COM_OPEN
COMSTOP1_5 1 COM_OPEN
COMSTOP2 2 COM_OPEN

COMRTSDISABLE 0 COM_FLOW
COMRTSENABLE 1 COM_FLOW
COMRTSHANDSHAKE 2 COM_FLOW
COMRTSTOGGLE 3 COM_FLOW

COMCTSOFF 0 COM_FLOW
COMCTSON 1 COM_FLOW

COMDTRDISABLE 0 COM_FLOW
COMDTRENABLE 1 COM_FLOW
COMDTRHANDSHAKE 2 COM_FLOW

COMDSROFF 0 COM_FLOW
COMDSRON 1 COM_FLOW

COMMODE232 0 COM_SET485
COMMODE485 1 COM_SET485

 ST-Script Guidelines 1.38

 Page 211 of 562

7. COMMON - ETHERNET

ETH_IP

Creates an IP address.

IP = ETH_IP (NUMERIC)
IP = ETH_IP (STRING)
IP = ETH_IP (COMP1, COMP2, COMP3, COMP4)

input

NUMERIC : ANY_UNSIGNED unique numeric field with IP address;
 only UDINT and DWORD types are actually allowed in this case;
 the 1st IP component is expected to be in the MSB of the given value
input

STRING : ANY_STRING the IP address is given in string form;
 the string must be formatted as "IP1.IP2.IP3.IP4"
input

COMP# : ANY_INT the 4 components of the IP address are given separately in numeric form;
 all the 4 components must be given, in the correct order (IP1, IP2, IP3, IP4)

output

IP : UDINT the normalized IP address

This function is used to normalize the format of IP addresses used with all the functions available for ethernet
management.
All the implemented functions expect IP addresses to be specified as UDINT values in the conventional
<in_addr> numeric format, with the 1st component of the address in the LSB and the last component in the
MSB of the address value.
Programmers though could find more 'friendly' ways to specify the addresses to better fit their needs. This
family of ETH_IP functions allows the creation of normalized addresses starting from a number of different
formats.

example

VAR

 ipadd : UDINT;

END_VAR;

ipadd := ETH_IP ("127.0.0.1"); // numeric result = 0x0100007F

ipadd := ETH_IP (127, 0, 0, 1); // numeric result = 0x0100007F

ipadd := ETH_IP (16#7F000001); // numeric result = 0x0100007F

 ST-Script Guidelines 1.38

 Page 212 of 562

ETH_GETIP

Converts a normalized IP address in different forms.

IPSTR = ETH_GETIP (IP)

input

IP : UDINT a normalized IP address;
 see ETH_IP for information about IPs normalization

output

IPSTR : STRING the given IP formatted as string;
 the returned string is of course in the form "IP1.IP2.IP3.IP4"

This function doesn't only convert the IP address in a string: it contemporarily split the address in its 4 numeric
components and store them in the 4 variables ETH_IP1, ETH_IP2, ETH_IP3, ETH_IP4.
These variables are only updated by successful execution of this function; in case of errors they are left
unchanged.

 ST-Script Guidelines 1.38

 Page 213 of 562

ETH_PING

Sends a PING (ICMP echo request) to a remote device of given IP address.

ECHO = ETH_PING (IP, TIMEOUT [, ATTEMPTS])

input

IP : UDINT normalized IP address of the remote device
TIMEOUT : ANY_INT maximum time to wait for the echo;
 given in milliseconds
ATTEMPTS : ANY_INT [OPTIONAL] maximum number of PING attempts;

the system automatically retries to send its request until a successful
answer is received

output

ECHO : BOOL TRUE if the echo answer has been received within the given TIMEOUT;
 FALSE if nothing has been received for the whole TIMEOUT duration

In case of ping error (a successful execution with a FALSE result) the variable ETH_ERROR might give further
details about what could have gone wrong.

example

VAR

 ethres : BOOL;

 ethscan : ARRAY [256] OF BOOL;

 ethidx : UINT;

 ethx, ethy : UINT;

 ethmap : ARRAY [16] OF STRING [32];

END_VAR;

// Build up a map of reachable devices

ethscan[0] := FALSE;

FOR ethidx := 1 TO 255 DO

 ethscan[ethidx] := ETH_PING (ETH_IP (172, 19, 5, ethidx), 200, 1);

END_FOR;

// Show the map as a string matrix

FOR ethy := 0 TO 15 DO // 16 rows of 16 chars each

 ethidx := 0; // counts the devices in each row

 ethmap[ethy] := '';

 FOR ethx := 0 TO 15 DO

 IF ethscan[ethy*16+ethx] THEN

 ethmap[ethy] := ethmap[ethy] + '*'; // * char for each existing device

 ethidx := ethidx + 1;

 ELSE

 ethmap[ethy] := ethmap[ethy] + '.'; // . char for each missing device

 END_IF;

 END_FOR;

 ethmap[ethy] := ethmap[ethy] + ' ' + ANY_TO_STRING (ethidx);

 _TRACE (ethmap[ethy]);

END_FOR;

 ST-Script Guidelines 1.38

 Page 214 of 562

ETH_TCPC_OPEN

Opens an ethernet communication channel connecting as a TCP client to a listening TCP server.

ETHID = ETH_TCPC_OPEN (IP, PORT [, LOCALPORT])

input

IP : UDINT the (normalized) IP address of the remote server;
 it's the address (or one of many) the server is supposed to be listening from
PORT : ANY_INT the IP port opened by the remote server;
 it's the port the server is supposed to be listening from
LOCALPORT : ANY_INT [OPTIONAL] used to force a fixed specific local IP port for the communication

channel;
 if missing, the local port is automatically selected by the system

among the available ones; for the same purpose, this local port could
be explicitly specified as ETHPORTAUTO

output

ETHID : UDINT the identifier of the created communication channel;
 it is defined as the index (base-0) of the ethernet manager instance associated

to the opened channel;
 this identifier will have to be used by all the subsequent script functions

(ETH_TCPC_$$$) related to this client

This function affects the variable ETH_NUMBER, meant to count the number of open ethernet channels.

The maximum number of ethernet channels managed by scripts is currently limited to 10. Once the ETH_NUMBER
reaches this limit, no more channels can be opened: new ETH_$$$_OPEN calls will fail.

 ST-Script Guidelines 1.38

 Page 215 of 562

ETH_TCPC_CLOSE

Closes an ethernet communication channel previously opened as a TCP client.

ETH_TCPC_CLOSE (ETHID)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN

The targeted ETHID must be related to a TCP client.

This function affects the variable ETH_NUMBER, meant to count the number of open ethernet channels.

This function reports a successful result if the system is able to reset the channel and remove it from the
managed ones; if, in the process, something goes wrong on the socket side, the variable ETH_ERROR might give
details about the issue.

 ST-Script Guidelines 1.38

 Page 216 of 562

ETH_TCPC_GETIPLOCAL

Retrieves the IP address set up as local (client) address when the connection with a server was established.

IP = ETH_TCPC_GETIPLOCAL (ETHID)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN

output

IP : UDINT the (normalized) IP address of the local client;
 it's the local address used by the socket when the connection with the server

was established

The targeted ETHID must be related to a TCP client.

As already mentioned, the returned IP address is in normalized (numeric) form.
Along with it, a couple of further variables are set up:
- ETH_IPADDRESS will replicate the returned IP address
- ETH_IPPORT will give the IP port associated with the communication channel
These variables are affected by every successful execution of this function; old values will be retained in case of
errors. Note that several other ethernet functions are meant to affect them though (see their description in the
<VARIABLES> section).

example

VAR

 IPadd : UDINT;

 IPport : UINT;

 ETHsvr, ETHcln : UDINT;

END_VAR

ETHsvr := ETH_TCPS_OPEN (ETHADDRESSANY, 2048); // open a channel as server

ETHcln := ETH_TCPC_OPEN (ETH_IP(127,0,0,1), 2048); // open a channel as client

// ETH_NUMBER : should state that there are 2 channels

IPadd := ETH_TCPC_GETIPLOCAL (ETHcln);

// IPadd and ETH_IPADDRESS should be 127.0.0.1 | ETH_IPPORT is a port selected by the OS

IPadd := ETH_TCPC_GETIPSERVER (ETHcln);

// IPadd and ETH_IPADDRESS should be 127.0.0.1 | ETH_IPPORT should be 2048

IPadd := ETH_TCPS_GETIPLOCAL (ETHsvr);

// IPadd and ETH_IPADDRESS should be 0.0.0.0 | ETH_IPPORT should be 2048

IPadd := ETH_TCPS_GETIPCLIENT (ETHsvr, 0);

// IPadd and ETH_IPADDRESS should be 127.0.0.1 | ETH_IPPORT is a port selected by the OS

ETH_TCPC_CLOSE (ETHcln);

ETH_TCPS_CLOSE (ETHsvr);

 ST-Script Guidelines 1.38

 Page 217 of 562

ETH_TCPC_GETIPSERVER

Retrieves the IP address of the remote server the TCP client connected to.

IP = ETH_TCPC_GETIPSERVER (ETHID)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN

output

IP : UDINT the (normalized) IP address of the remote server;
 it's the address that was explicitly given when the connection was requested by

the function ETH_TCPC_OPEN

The targeted ETHID must be related to a TCP client.

As already mentioned, the returned IP address is in normalized (numeric) form.
Along with it, a couple of further variables are set up:
- ETH_IPADDRESS will replicate the returned IP address
- ETH_IPPORT will give the IP port associated with the communication channel
These variables are affected by every successful execution of this function; old values will be retained in case of
errors. Note that several other ethernet functions are meant to affect them though (see their description in the
<VARIABLES> section).

 ST-Script Guidelines 1.38

 Page 218 of 562

ETH_TCPC_DATALENGTH

Retrieves the number of bytes currently available for reading from a given channel.

LENGTH = ETH_TCPC_DATALENGTH (ETHID)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN

output

LENGTH : UDINT the number of available bytes, already readable from the given channel

The targeted ETHID must be related to a TCP client.

Note that even in case of successful execution, if information inconsistencies are found on the socket side,
error codes might be notified by the ETH_ERROR variable.

 ST-Script Guidelines 1.38

 Page 219 of 562

ETH_TCPC_READBYTE

Reads a single byte of data from a given ethernet channel.

VALUE = ETH_TCPC_READBYTE (ETHID, TIMEOUT)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : BYTE the value of the acquired byte

The targeted ETHID must be related to a TCP client.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired.
Being this function meant to read 1 only byte, the variable value will be 1 in case data was available for reading,
or 0 otherwise.
In case of errors, the variable remains unaffected.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

example

VAR

 ethid : UDINT;

 length, index : UDINT;

 value : BYTE;

END_VAR

...

// Simple way with <DATALENGTH>

length := ETH_TCPC_DATALENGTH (ethid);

FOR index := 1 TO length DO

 value := ETH_TCPC_READBYTE (ethid, 0);

 // do whatever needed with the acquired <value>

END_FOR;

...

// Simple way with <ETH_RXLENGTH>

WHILE TRUE DO

 value := ETH_TCPC_READBYTE (ethid, 1);

 IF (ETH_RXLENGTH > 0) THEN

 // do whatever needed with the acquired <value>

 ELSE

 EXIT;

 END_IF;

END_WHILE;

 ST-Script Guidelines 1.38

 Page 220 of 562

ETH_TCPC_READBUFFER

Reads a whole buffer of data from a given ethernet channel.

VALUE = ETH_TCPC_READBUFFER (ETHID, SIZE, TIMEOUT)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN
SIZE : ANY_INT the maximum number of bytes to get from the ethernet;
 this value is currently limited to 65536 bytes (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : ANY the value of the acquired buffer;
 despite the generic declaration, this result is always an array of bytes;
 the size of the array is defined by the input parameter SIZE

The targeted ETHID must be related to a TCP client.

In case of successful execution, the function returns an array of bytes with the given SIZE. Not necessarily all the
bytes of the array have to be filled up with read bytes: some might be reset to 0.
The variable ETH_RXLENGTH will count the number of bytes read and returned.

The given SIZE is the number of elements of the returned array, and the maximum number of bytes acquired
from the ethernet. The function waits for something to be available for reading from the port; as soon as
something is available, it is acquired and returned:
- if nothing is found to be available within the given TIMEOUT, then nothing is read, the returned array is

completely reset, and the variable ETH_RXLENGTH is set to 0;
- if any number of bytes within the given SIZE are found to be available, then all these bytes are acquired and

returned, the remaining part of the array remains reset, and the variable ETH_RXLENGTH is set to that exact
number of bytes;

- if more than SIZE bytes are available, then only the first SIZE ones are read and returned; the variable
ETH_RXLENGTH is set to SIZE.

At any given time this function should be able to read as many bytes as stated by ETH_TCPC_DATALENGTH.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 221 of 562

ETH_TCPC_READSTRING

Reads a whole buffer of data in string (short) form from a given ethernet channel.

VALUE = ETH_TCPC_READSTRING (ETHID, SIZE, TIMEOUT)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN
SIZE : ANY_INT the maximum number of characters to get from the ethernet;
 this value is currently limited to 65536 characters (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : STRING the value of the acquired string;
 the allocated size of the string is defined by the input parameter SIZE;
 the actual length of the string content though depends on the data available for

reading

The targeted ETHID must be related to a TCP client.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired (same as the
number of characters).
The stored value could be anything between 0 and SIZE, depending on the amount of data available for reading.
In case of errors, the variable remains unaffected.

The given SIZE is the number of characters the returned string will be allocated for (and the maximum number
of bytes acquired from the ethernet). The function waits for something to be available for reading from the
port; as soon as something is available, it is acquired and returned. The acquisition terminates:
- when the timeout is reached,
- when the maximum number of characters has been read,
- when there is nothing more to read,
- when a NUL terminator is read.
In particular, about the given limits:
- if nothing is found to be available within the given TIMEOUT, then nothing is read, the returned string is empty,

and the variable ETH_RXLENGTH is set to 0;
- if any number of characters within the given SIZE are found to be available, then all these characters are

acquired and returned in the result string, the string is terminated accordingly, and the variable ETH_RXLENGTH
is set to that exact number of bytes;

- if more than SIZE characters are available, then only the first SIZE ones are read and returned in the string; the
variable ETH_RXLENGTH is set to SIZE.

At any given time this function should be able to read as many bytes as stated by ETH_TCPC_DATALENGTH.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong. Similarly, in case issues arise
on the socket side after a part of string has been acquired already, then the function successfully returns what
has been read in the output string, and let the variable ETH_ERROR give details about the error.

 ST-Script Guidelines 1.38

 Page 222 of 562

ETH_TCPC_READWSTRING

Reads a whole buffer of data in string (wide) form from a given ethernet channel.

VALUE = ETH_TCPC_READWSTRING (ETHID, SIZE, TIMEOUT)

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN
SIZE : ANY_INT the maximum number of characters to get from the ethernet;
 this value is currently limited to 32768 characters (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : WSTRING the value of the acquired (wide) string;
 the allocated size of the string is defined by the input parameter SIZE;
 the actual length of the string content though depends on the data available for

reading

The targeted ETHID must be related to a TCP client.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired; note that this
is NOT the same as the number of characters (with wide strings involved, each character is made of 2 bytes).
The stored value could be anything between 0 and SIZE*2, depending on the amount of data available for
reading, and is supposed to always be an even value (multiple of 2, being the characters made of 2 bytes each).
In case of errors, the variable remains unaffected.

The given SIZE is the number of characters the returned string will be allocated for (the maximum number of
bytes acquired from the ethernet will be twice as much). The function waits for something to be available for
reading from the port; as soon as something is available, it is acquired and returned. The acquisition
terminates:
- when the timeout is reached,
- when the maximum number of characters has been read,
- when there is nothing more to read,
- when a NUL terminator is read.
In particular, about the given limits:
- if nothing is found to be available within the given TIMEOUT, then nothing is read, the returned string is empty,

and the variable ETH_RXLENGTH is set to 0;
- if any number of characters within the given SIZE are found to be available, then all these characters are

acquired and returned in the result string, the string is terminated accordingly, and the variable ETH_RXLENGTH
is set to that number of bytes (twice the number of characters);

- if more than SIZE characters are available, then only the first SIZE ones are read and returned in the string; the
variable ETH_RXLENGTH is set to SIZE * 2.

At any given time this function should be able to read as many bytes as stated by ETH_TCPC_DATALENGTH.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong. Similarly, in case issues arise
on the socket side after a part of string has been acquired already, then the function successfully returns what
has been read in the output string, and let the variable ETH_ERROR give details about the error.

 ST-Script Guidelines 1.38

 Page 223 of 562

ETH_TCPC_WRITE

Writes data on an opened ethernet channel.

ETH_TCPC_WRITE (ETHID, VALUE [, SIZE])

input

ETHID : UDINT the identifier of an existing client channel;
 must be a valid identifier returned by a previous call to ETH_TCPC_OPEN
VALUE : ANY the value that has to be transmitted;
 this could be a value of any type;
 the transmitted data will be the exact binary image of the given value;
 the programmer is supposed to know the binary format of the used types
SIZE : ANY_INT [OPTIONAL] size (in bytes) of the part of VALUE sent on the ethernet;
 can be used to limit the number of bytes actually transmitted in cases

where the data is passed in buffers (likely arrays) that might either be
full or not;

 if this parameter is missing, then the whole VALUE is written;
 giving a SIZE bigger than the passed VALUE has no effect: the

transmission is limited to the actual VALUE size anyway

The targeted ETHID must be related to a TCP client.

The function transmits exactly the number of bytes required by the type of the given value.
Any type of value can be passed to the function, included arrays, structures and strings.
The programmer must be aware of the exact format, size and endianity of the written data.
Note that even strings follow the same rule: plain STRINGs are sent with 1 byte per character, while WSTRINGs
are sent using 2 bytes per character.
A degree of management on plain strings is implemented actually: whereas arrays of strings are sent like binary
chunks of data (one byte for each byte of data buffer), plain strings are in fact terminated at their NUL
terminator.

The variable ETH_TXLENGTH will count the number of bytes transmitted by a successful execution of this function
(failed executions will leave the variable unchanged).

In case of successful result, if the function couldn't write anything (ETH_TXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

example

VAR

 cbt : BYTE;

 cab : ARRAY [100] OF BYTE;

 cas : ARRAY [10] OF STRING [5];

END_VAR;

...

ETH_TCPC_WRITE (ethid, cbt); // ETH_TXLENGTH = 1 byte sent

ETH_TCPC_WRITE (ethid, cab); // ETH_TXLENGTH = 100 bytes sent

ETH_TCPC_WRITE (ethid, cas); // ETH_TXLENGTH = 10*(5+1) = 60 bytes sent

 ST-Script Guidelines 1.38

 Page 224 of 562

ETH_TCPS_OPEN

Creates a listening socket as TCP server.
Actual communication channels will be automatically created when clients submit their connection requests.

ETHID = ETH_TCPS_OPEN (IP, PORT)

input

IP : UDINT the (normalized) IP address for the local listening socket;
 identifies the address of the ethernet port from which the server is expected to

receive the clients connection requests;
 can be ETHADDRESSANY if the server is supposed to accept connections from any

available ethernet port
PORT : ANY_INT the IP port opened by the server for its listening socket;
 this port is a mandatory specification (explicitly forbidden to be an

ETHPORTAUTO): it's the port that the clients will have to use in their connection
requests

output

ETHID : UDINT the identifier of the created server channel;
 it is defined as the index (base-0) of the ethernet manager instance associated

to the opened channel;
 this identifier will have to be used by all the subsequent script functions

(ETH_TCPS_$$$) related to this communication server

The TCP server created with this function is able to handle up to 10 clients contemporarily.
Every time a new client connects to the server, a new dedicated communication socket is created for it.
The listening socket will keep on working for as long as needed, to accept all the supported clients connections.
Connection attempts from clients after this limit has been reached will result in failure.

This function affects the variable ETH_NUMBER, meant to count the number of open ethernet channels.
The server listening socket is counted only: the communication channels created later upon clients requests
won't affect this variable (the created server counts as 1, regardless the number of clients connected to it).

The maximum number of ethernet channels managed by scripts is currently limited to 10. Once the ETH_NUMBER
reaches this limit, no more channels can be opened: new ETH_$$$_OPEN calls will fail.

 ST-Script Guidelines 1.38

 Page 225 of 562

ETH_TCPS_CLOSE

Closes an ethernet communication channel maintained as a TCP server.
Could be aimed to either the whole server domain, or to specific client connections.

ETH_TCPS_CLOSE (ETHID [, CLIENTIP, CLIENTPORT])

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
CLIENTIP : UDINT [OPTIONAL] the (normalized) IP address of a connected client;
 given only together with the CLIENTPORT;
 if missing, the function is intended to be used to close the whole

server domain: the server won't be listening for clients anymore, and
all the existing clients connections are shut down;

 if given, the function is intended to be used to close only the
connection with the specified client; the server will keep on listening
for incoming connection requests

CLIENTPORT : ANY_INT [OPTIONAL] the IP port of a connected client;
 given only together with the CLIENTIP (see behaviour above)

The targeted ETHID must be related to a TCP server.

Depending on the existence of a client address, the function can be used to affect a single client connection or
the whole server with all its current connections.

This function affects the variable ETH_NUMBER, meant to count the number of open ethernet channels.

This function reports a successful result if the system is able to reset the channel and remove it from the
managed ones; if, in the process, something goes wrong on the socket side, the variable ETH_ERROR might give
details about the issue.

 ST-Script Guidelines 1.38

 Page 226 of 562

ETH_TCPS_CLIENTSNUMBER

Retrieves the number of clients currently connected to the TCP server.

NUMBER = ETH_TCPS_CLIENTSNUMBER (ETHID)

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN

output

NUMBER : UDINT the number of clients connected

The targeted ETHID must be related to a TCP server.

The returned value (within the range 0..10) acts as limit for the functions that require a client's index among
their parameters (see ETH_TCPS_GETIPCLIENT).

 ST-Script Guidelines 1.38

 Page 227 of 562

ETH_TCPS_GETIPLOCAL

Retrieves the IP address set up as local (server) address when the listening socket was created.

IP = ETH_TCPS_GETIPLOCAL (ETHID)

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN

output

IP : UDINT the (normalized) IP address of the local server;
 it's the local address that was explicitly given when the server was created by

the function ETH_TCPS_OPEN

The targeted ETHID must be related to a TCP server.

As already mentioned, the returned IP address is in normalized (numeric) form.
Along with it, a couple of further variables are set up:
- ETH_IPADDRESS will replicate the returned IP address
- ETH_IPPORT will give the IP port associated with the communication channel
These variables are affected by every successful execution of this function; old values will be retained in case of
errors. Note that several other ethernet functions are meant to affect them though (see their description in the
<VARIABLES> section).

 ST-Script Guidelines 1.38

 Page 228 of 562

ETH_TCPS_GETIPCLIENT

Retrieves the IP address of a specific remote TCP client currently connected.

IP = ETH_TCPS_GETIPCLIENT (ETHID, INDEX)

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
INDEX : ANY_INT the index (base-0) of the client among those connected to this server;
 the value of this parameter should be limited by the current value of

ETH_TCPS_CLIENTSNUMBER

output

IP : UDINT the (normalized) IP address of a remote client;
 it's the remote address recognized by the server when the client connection

request was accepted

The targeted ETHID must be related to a TCP server.

As said, the index is supposed to be a number between 0 and ETH_TCPS_CLIENTSNUMBER (-1).
This means the range is affected by every client added and removed.
Clients additions happen automatically every time a client connection request is accepted by a listening server
(the server will be listening until the maximum number of connected clients is reached). Clients removals
happen only when explicitly requested by an ETH_TCPS_CLOSE call.
The clients will be maintained in chronological order, depending on their connection time. This means that new
clients are always appended with the highest index, and also that when a client is removed (closed) all those
with higher index will have the index adjusted (decreased) so that their count will remain continuous.
For example:
- clients A, B and C are added one after the other
 > their indexes will be: A(0), B(1), C(2)
- client B is closed
 > the indexes will become: A(0), C(1)

As already mentioned, the returned IP address is in normalized (numeric) form.
Along with it, a couple of further variables are set up:
- ETH_IPADDRESS will replicate the returned IP address
- ETH_IPPORT will give the IP port associated with the communication channel
These variables are affected by every successful execution of this function; old values will be retained in case of
errors. Note that several other ethernet functions are meant to affect them though (see their description in the
<VARIABLES> section).

 ST-Script Guidelines 1.38

 Page 229 of 562

ETH_TCPS_DATALENGTH

Retrieves the number of bytes currently available for reading from a given channel.

LENGTH = ETH_TCPS_DATALENGTH (ETHID [, CLIENTIP, CLIENTPORT])

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
CLIENTIP : UDINT [OPTIONAL] the (normalized) IP address of a connected client;
 given only together with the CLIENTPORT;
 if given, the function is used to access only the specified client;
 if missing, the function is used to check all the connected clients and

access information of whichever one is first found to have available
data

CLIENTPORT : ANY_INT [OPTIONAL] the IP port of a connected client;
 given only together with the CLIENTIP (see behaviour above)

output

LENGTH : UDINT the number of available bytes, already readable from the given channel

The targeted ETHID must be related to a TCP server.

If the client IP address and port are explicitly given as parameters, then the identified client must be among the
connected ones. In this case the identification parameters are replicated in the variables:
- ETH_IPADDRESS a client IP address
- ETH_IPPORT a client IP port
and the server retrieves information about that client only.
If the client identification parameters are not given instead, then this function sets the variables above with
information related to the first client found to be useful:
1. if the server finds among all the connected clients at least one with available data, then the size of that

client data is returned, and its address and port are set up in these variables;
3. if the server finds no data from any of the connected clients, then the returned value is 0 and these

variables are set to 0.
In case of execution errors, these variables are not changed.

Note that even in case of successful execution, if information inconsistencies are found on the socket side,
error codes might be notified by the ETH_ERROR variable.

 ST-Script Guidelines 1.38

 Page 230 of 562

ETH_TCPS_READBYTE

Reads a single byte of data from a given ethernet channel.

VALUE = ETH_TCPS_READBYTE (ETHID, TIMEOUT [, CLIENTIP, CLIENTPORT])

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0
CLIENTIP : UDINT [OPTIONAL] the (normalized) IP address of a connected client;
 given only together with the CLIENTPORT;
 if given, the function is used to access only the specified client;
 if missing, the function is used to check all the connected clients and

read data from whichever one is first found to have some available
CLIENTPORT : ANY_INT [OPTIONAL] the IP port of a connected client;
 given only together with the CLIENTIP (see behaviour above)

output

VALUE : BYTE the value of the acquired byte

The targeted ETHID must be related to a TCP server.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired.
Being this function meant to read 1 only byte, the variable value will be 1 in case data was available for reading,
or 0 otherwise.
In case of errors, the variable remains unaffected.

If the client IP address and port are explicitly given as parameters, then the identified client must be among the
connected ones. In this case the identification parameters are replicated in the variables:
- ETH_IPADDRESS a client IP address
- ETH_IPPORT a client IP port
and the server reads data from that client only.
If the client identification parameters are not given instead, then this function sets the variables above with
information related to the first client found to be useful:
1. if the server finds among all the connected clients at least one with available data, then data is acquired

from its channel, and its address and port are set up in these variables;
3. if the server finds no data from any of the connected clients, then nothing can be read, and these variables

are set to 0 (along with the ETH_RXLENGTH).
In case of execution errors, these variables are not changed.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 231 of 562

ETH_TCPS_READBUFFER

Reads a whole buffer of data from a given ethernet channel.

VALUE = ETH_TCPS_READBUFFER (ETHID, SIZE, TIMEOUT [, CLIENTIP, CLIENTPORT])

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
SIZE : ANY_INT the maximum number of bytes to get from the ethernet;
 this value is currently limited to 65536 bytes (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0
CLIENTIP : UDINT [OPTIONAL] the (normalized) IP address of a connected client;
 given only together with the CLIENTPORT;
 if given, the function is used to access only the specified client;
 if missing, the function is used to check all the connected clients and

read data from whichever one is first found to have some available
CLIENTPORT : ANY_INT [OPTIONAL] the IP port of a connected client;
 given only together with the CLIENTIP (see behaviour above)

output

VALUE : ANY the value of the acquired buffer;
 despite the generic declaration, this result is always an array of bytes;
 the size of the array is defined by the input parameter SIZE

The targeted ETHID must be related to a TCP server.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired.
The stored value could be anything between 0 and SIZE, depending on the amount of data available for reading.
In case of errors, the variable remains unaffected.

Upon identification of a target client, this function affects the variables ETH_IPADDRESS and ETH_IPPORT (see
variables and ETH_TCPS_READBYTE for details).

The given SIZE is the number of elements of the returned array, and the maximum number of bytes acquired
from the ethernet. The function waits for something to be available for reading from the port; as soon as
something is available, it is acquired and returned:
- if nothing is found to be available within the given TIMEOUT, then nothing is read, the returned array is

completely reset, and the variable ETH_RXLENGTH is set to 0;
- if any number of bytes within the given SIZE are found to be available, then all these bytes are acquired and

returned, the remaining part of the array remains reset, and the variable ETH_RXLENGTH is set to that exact
number of bytes;

- if more than SIZE bytes are available, then only the first SIZE ones are read and returned; the variable
ETH_RXLENGTH is set to SIZE.

At any given time this function should be able to read as many bytes as stated by ETH_TCPS_DATALENGTH.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 232 of 562

ETH_TCPS_READSTRING

Reads a whole buffer of data in string (short) form from a given ethernet channel.

VALUE = ETH_TCPS_READSTRING (ETHID, SIZE, TIMEOUT [, CLIENTIP, CLIENTPORT])

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
SIZE : ANY_INT the maximum number of characters to get from the ethernet;
 this value is currently limited to 65536 characters (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0
CLIENTIP : UDINT [OPTIONAL] the (normalized) IP address of a connected client;
 given only together with the CLIENTPORT;
 if given, the function is used to access only the specified client;
 if missing, the function is used to check all the connected clients and

read data from whichever one is first found to have some available
CLIENTPORT : ANY_INT [OPTIONAL] the IP port of a connected client;
 given only together with the CLIENTIP (see behaviour above)

output

VALUE : STRING the value of the acquired string;
 the allocated size of the string is defined by the input parameter SIZE;
 the actual length of the string content though depends on the data available for

reading

The targeted ETHID must be related to a TCP server.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired (same as the
number of characters).
The stored value could be anything between 0 and SIZE, depending on the amount of data available for reading.
In case of errors, the variable remains unaffected.

Upon identification of a target client, this function affects the variables ETH_IPADDRESS and ETH_IPPORT (see
variables and ETH_TCPS_READBYTE for details).

The given SIZE is the number of characters the returned string will be allocated for (and the maximum number
of bytes acquired from the ethernet). The function waits for something to be available for reading from the
port; as soon as something is available, it is acquired and returned.
See ETH_TCPC_READSTRING for details about the behaviour of a similar read function with respect to the
management of the data acquisition, output preparation and ETH_RXLENGTH setting.

At any given time this function should be able to read as many bytes as stated by ETH_TCPC_DATALENGTH.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 233 of 562

ETH_TCPS_READWSTRING

Reads a whole buffer of data in string (wide) form from a given ethernet channel.

VALUE = ETH_TCPS_READWSTRING (ETHID, SIZE, TIMEOUT [, CLIENTIP, CLIENTPORT])

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
SIZE : ANY_INT the maximum number of characters to get from the ethernet;
 this value is currently limited to 32768 characters (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0
CLIENTIP : UDINT [OPTIONAL] the (normalized) IP address of a connected client;
 given only together with the CLIENTPORT;
 if given, the function is used to access only the specified client;
 if missing, the function is used to check all the connected clients and

read data from whichever one is first found to have some available
CLIENTPORT : ANY_INT [OPTIONAL] the IP port of a connected client;
 given only together with the CLIENTIP (see behaviour above)

output

VALUE : WSTRING the value of the acquired (wide) string;
 the allocated size of the string is defined by the input parameter SIZE;
 the actual length of the string content though depends on the data available for

reading

The targeted ETHID must be related to a TCP server.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired; note that this
is NOT the same as the number of characters (with wide strings involved, each character is made of 2 bytes).
The stored value could be anything between 0 and SIZE*2, depending on the amount of data available for
reading, and is supposed to always be an even value (multiple of 2, being the characters made of 2 bytes each).
In case of errors, the variable remains unaffected.

Upon identification of a target client, this function affects the variables ETH_IPADDRESS and ETH_IPPORT (see
variables and ETH_TCPS_READBYTE for details).

The given SIZE is the number of characters the returned string will be allocated for (the maximum number of
bytes acquired from the ethernet will be twice as much). The function waits for something to be available for
reading from the port; as soon as something is available, it is acquired and returned.
See ETH_TCPC_READWSTRING for details about the behaviour of a similar read function with respect to the
management of the data acquisition, output preparation and ETH_RXLENGTH setting.

At any given time this function should be able to read as many bytes as stated by ETH_TCPC_DATALENGTH.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 234 of 562

ETH_TCPS_WRITE

Writes data on an opened ethernet channel.

ETH_TCPS_WRITE (ETHID, VALUE [, SIZE], CLIENTIP, CLIENTPORT)

input

ETHID : UDINT the identifier of an existing server channel;
 must be a valid identifier returned by a previous call to ETH_TCPS_OPEN
VALUE : ANY the value that has to be transmitted;
 this could be a value of any type;
 the transmitted data will be the exact binary image of the given value;
 the programmer is supposed to know the binary format of the used types
SIZE : ANY_INT [OPTIONAL] size (in bytes) of the part of VALUE sent on the ethernet;
 can be used to limit the number of bytes actually transmitted in cases

where the data is passed in buffers (likely arrays) that might either be
full or not;

 if this parameter is missing, then the whole VALUE is written;
 giving a SIZE bigger than the passed VALUE has no effect: the

transmission is limited to the actual VALUE size anyway
CLIENTIP : UDINT the IP address (normalized) of the target client;
 together with the CLIENTPORT is used to identify the client (among the connected

ones) to whom the data is sent
CLIENTPORT : ANY_INT the IP port of the target client;
 used together with the CLIENTIP; see above

The targeted ETHID must be related to a TCP server.

The function transmits exactly the number of bytes required by the type of the given value.
Any type of value can be passed to the function, included arrays, structures and strings.
The programmer must be aware of the exact format, size and endianity of the written data.
Note that even strings follow the same rule: plain STRINGs are sent with 1 byte per character, while WSTRINGs
are sent using 2 bytes per character.
A degree of management on plain strings is implemented actually: whereas arrays of strings are sent like binary
chunks of data (one byte for each byte of data buffer), plain strings are in fact terminated at their NUL
terminator.

The variable ETH_TXLENGTH will count the number of bytes transmitted by a successful execution of this function
(failed executions will leave the variable unchanged).

In case of successful result, if the function couldn't write anything (ETH_TXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 235 of 562

ETH_UDP_OPEN

Open an ethernet communication channel in (connection-less) UDP mode.

ETHID = ETH_UDP_OPEN (IP, PORT)

input

IP : UDINT the (normalized) IP address for the (local) socket;
 identifies the address of the ethernet port used by the channel to transmit and

receive data;
 this parameter could be given as ETHADDRESSANY to specify a channel that is not

bound to a specific address: the channel will be able to receive messages from
any ethernet port

PORT : ANY_INT the IP port opened by the (local) socket;
 this is a mandatory specification (explicitly forbidden to be an ETHPORTAUTO): it's

the port that has to be used by remote partners to reach this channel

output

ETHID : UDINT the identifier of the created UDP channel;
 it is defined as the index (base-0) of the ethernet manager instance associated

to the opened channel;
 this identifier will have to be used by all the subsequent script functions

(ETH_UDP_$$$) related to this communication channel

This function affects the variable ETH_NUMBER, meant to count the number of open ethernet channels.

The maximum number of ethernet channels managed by scripts is currently limited to 10. Once the ETH_NUMBER
reaches this limit, no more channels can be opened: new ETH_$$$_OPEN calls will fail.

 ST-Script Guidelines 1.38

 Page 236 of 562

ETH_UDP_CLOSE

Closes an ethernet communication channel previously opened in UDP mode.

ETH_UDP_CLOSE (ETHID)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN

The targeted ETHID must be related to a UDP channel.

This function affects the variable ETH_NUMBER, meant to count the number of open ethernet channels.

This function reports a successful result if the system is able to reset the channel and remove it from the
managed ones; if, in the process, something goes wrong on the socket side, the variable ETH_ERROR might give
details about the issue.

 ST-Script Guidelines 1.38

 Page 237 of 562

ETH_UDP_GETIPLOCAL

Retrieves the local IP address set up when the channel was created.

IP = ETH_UDP_GETIPLOCAL (ETHID)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN

output

IP : UDINT the (normalized) IP address of the local socket;
 it's the local address explicitly given when the UDP channel was created by the

function ETH_UDP_OPEN

The targeted ETHID must be related to a UDP channel.

As already mentioned, the returned IP address is in normalized (numeric) form.
Along with it, a couple of further variables are set up:
- ETH_IPADDRESS will replicate the returned IP address
- ETH_IPPORT will give the IP port associated with the communication channel
These variables are affected by every successful execution of this function; old values will be retained in case of
errors. Note that several other ethernet functions are meant to affect them though (see their description in the
<VARIABLES> section).

 ST-Script Guidelines 1.38

 Page 238 of 562

ETH_UDP_DATALENGTH

Retrieves the number of bytes currently available for reading from a given channel.

LENGTH = ETH_UDP_DATALENGTH (ETHID)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN

output

LENGTH : UDINT the number of available bytes, already readable from the given channel

The targeted ETHID must be related to a UDP channel.

This function will return the total number of bytes waiting to be read.
There is no way to retrieve information about the number of datagrams, nor about the amount of data
received from specific remote partners.

Note that even in case of successful execution, if information inconsistencies are found on the socket side,
error codes might be notified by the ETH_ERROR variable.

NOTE: this function behaves in slightly different ways on different platforms:
- Windows: the function returns the total number of bytes currently readable from the UDP channel (the sum

of the lengths of all the pending datagrams);
- Linux: the function only returns the length of the next pending datagram.

 ST-Script Guidelines 1.38

 Page 239 of 562

ETH_UDP_READBYTE

Reads a single byte of data from a given ethernet channel.

VALUE = ETH_UDP_READBYTE (ETHID, TIMEOUT)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : BYTE the value of the acquired byte

The targeted ETHID must be related to a UDP channel.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired.
Being this function meant to read 1 only byte, the variable value will be 1 in case data was available for reading,
or 0 otherwise.
In case of errors, the variable remains unaffected.

Remember that UDP communication is based on whole datagrams, not on streams of bytes: if an
ETH_UDP_READBYTE instruction is used to read from a larger datagram, then the 1st byte of the packet is returned,
and the remaining part is simply lost.

Upon successful execution, this function is able to set the variables
- ETH_IPADDRESS a partner IP address
- ETH_IPPORT a partner IP port
with the information related to the partner that actually transmitted the acquired data.
In case of execution errors, these variables are not changed.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 240 of 562

ETH_UDP_READBUFFER

Reads a whole buffer of data from a given ethernet channel.

VALUE = ETH_UDP_READBUFFER (ETHID, SIZE, TIMEOUT)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN
SIZE : ANY_INT the maximum number of bytes to get from the ethernet;
 this value is currently limited to 65536 bytes (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : ANY the value of the acquired buffer;
 despite the generic declaration, this result is always an array of bytes;
 the size of the array is defined by the input parameter SIZE

The targeted ETHID must be related to a UDP channel.

In case of successful execution, the function returns an array of bytes with the given SIZE. Not necessarily all the
bytes of the array have to be filled up with read bytes: some might be reset to 0.
The variable ETH_RXLENGTH will count the number of bytes read and returned.

The given SIZE is the number of elements of the returned array, and the maximum number of bytes acquired
from the ethernet. The function waits for something to be available for reading from the port; as soon as
something is available, it is acquired and returned:
- if nothing is found to be available within the given TIMEOUT, then nothing is read, the returned array is

completely reset, and the variable ETH_RXLENGTH is set to 0;
- if any number of bytes within the given SIZE are found to be available, then all these bytes are acquired and

returned, the remaining part of the array remains reset, and the variable ETH_RXLENGTH is set to that exact
number of bytes;

- if more than SIZE bytes are available, then only the first SIZE ones are read and returned; the variable
ETH_RXLENGTH is set to SIZE.

At any given time this function should be able to read as many bytes as stated by ETH_UDP_DATALENGTH.

Remember that UDP communication is based on whole datagrams, not on streams of bytes: if an
ETH_UDP_READBUFFER with a given size is used to read from a larger datagram, then the initial bytes of the packet
are returned, and the remaining part is simply lost.

Upon successful execution, this function is able to set the variables
- ETH_IPADDRESS a partner IP address
- ETH_IPPORT a partner IP port
with the information related to the partner that actually transmitted the acquired data.
In case of execution errors, these variables are not changed.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 241 of 562

ETH_UDP_READSTRING

Reads a whole buffer of data in string (short) form from a given ethernet channel.

VALUE = ETH_UDP_READSTRING (ETHID, SIZE, TIMEOUT)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN
SIZE : ANY_INT the maximum number of characters to get from the ethernet;
 this value is currently limited to 65536 characters (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : STRING the value of the acquired string;
 the allocated size of the string is defined by the input parameter SIZE;
 the actual length of the string content though depends on the data available for

reading

The targeted ETHID must be related to a UDP channel.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired (same as the
number of characters).
The stored value could be anything between 0 and SIZE, depending on the amount of data available for reading.
In case of errors, the variable remains unaffected.

The given SIZE is the number of characters the returned string will be allocated for (and the maximum number
of bytes acquired from the ethernet). The function waits for something to be available for reading from the
port; as soon as something is available, it is acquired and returned.
See ETH_TCPC_READSTRING for details about the behaviour of a similar read function with respect to the
management of the data acquisition, output preparation and ETH_RXLENGTH setting.

At any given time this function should be able to read as many bytes as stated by ETH_UDP_DATALENGTH.

Remember that UDP communication is based on whole datagrams, not on streams of bytes: if an
ETH_UDP_READSTRING with a given size is used to read from a larger datagram, then the initial characters of the
packet are returned, and the remaining part is simply lost.

Upon successful execution, this function is able to set the variables
- ETH_IPADDRESS a partner IP address
- ETH_IPPORT a partner IP port
with the information related to the partner that actually transmitted the acquired data.
In case of execution errors, these variables are not changed.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong. Similarly, in case issues arise
on the socket side after a part of string has been acquired already, then the function successfully returns what
has been read in the output string, and let the variable ETH_ERROR give details about the error.

 ST-Script Guidelines 1.38

 Page 242 of 562

ETH_UDP_READWSTRING

Reads a whole buffer of data in string (wide) form from a given ethernet channel.

VALUE = ETH_UDP_READWSTRING (ETHID, SIZE, TIMEOUT)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN
SIZE : ANY_INT the maximum number of characters to get from the ethernet;
 this value is currently limited to 32768 characters (64KB)
TIMEOUT : ANY_INT a read timeout: the number of milliseconds the function is allowed to wait in

case nothing is available for reading yet; can be 0

output

VALUE : WSTRING the value of the acquired (wide) string;
 the allocated size of the string is defined by the input parameter SIZE;
 the actual length of the string content though depends on the data available for

reading

The targeted ETHID must be related to a UDP channel.

After a successful execution, in the variable ETH_RXLENGTH is stored the number of bytes acquired; note that this
is NOT the same as the number of characters (with wide strings involved, each character is made of 2 bytes).
The stored value could be anything between 0 and SIZE*2, depending on the amount of data available for
reading, and is supposed to always be an even value (multiple of 2, being the characters made of 2 bytes each).
In case of errors, the variable remains unaffected.

The given SIZE is the number of characters the returned string will be allocated for (the maximum number of
bytes acquired from the ethernet will be twice as much). The function waits for something to be available for
reading from the port; as soon as something is available, it is acquired and returned.
See ETH_TCPC_READWSTRING for details about the behaviour of a similar read function with respect to the
management of the data acquisition, output preparation and ETH_RXLENGTH setting.

At any given time this function should be able to read as many bytes as stated by ETH_UDP_DATALENGTH.

Remember that UDP communication is based on whole datagrams, not on streams of bytes: if an
ETH_UDP_READWSTRING with a given size is used to read from a larger datagram, then the initial characters of the
packet are returned, and the remaining part is simply lost.

Upon successful execution, this function is able to set the variables
- ETH_IPADDRESS a partner IP address
- ETH_IPPORT a partner IP port
with the information related to the partner that actually transmitted the acquired data.
In case of execution errors, these variables are not changed.

In case of successful result, if the function couldn't read anything (ETH_RXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong. Similarly, in case issues arise
on the socket side after a part of string has been acquired already, then the function successfully returns what
has been read in the output string, and let the variable ETH_ERROR give details about the error.

 ST-Script Guidelines 1.38

 Page 243 of 562

ETH_UDP_WRITE

Writes data on an opened ethernet channel.

ETH_UDP_WRITE (ETHID, VALUE [, SIZE], DESTIP, DESTPORT)

input

ETHID : UDINT the identifier of an existing UDP channel;
 must be a valid identifier returned by a previous call to ETH_UDP_OPEN
VALUE : ANY the value that has to be transmitted;
 this could be a value of any type;
 the transmitted data will be the exact binary image of the given value;
 the programmer is supposed to know the binary format of the used types
SIZE : ANY_INT [OPTIONAL] size (in bytes) of the part of VALUE sent on the ethernet;
 can be used to limit the number of bytes actually transmitted in cases

where the data is passed in buffers (likely arrays) that might either be
full or not;

 if this parameter is missing, then the whole VALUE is written;
 giving a SIZE bigger than the passed VALUE has no effect: the

transmission is limited to the actual VALUE size anyway
DESTIP : UDINT the IP address (normalized) of the UDP partner;
 together with the DESTPORT is used to identify the target
DESTPORT : ANY_INT the IP port of the UDP partner;
 used together with the DESTIP; see above

The targeted ETHID must be related to a UDP channel.

The function transmits exactly the number of bytes required by the type of the given value.
Any type of value can be passed to the function, included arrays, structures and strings.
The programmer must be aware of the exact format, size and endianity of the written data.
Note that even strings follow the same rule: plain STRINGs are sent with 1 byte per character, while WSTRINGs
are sent using 2 bytes per character.
A degree of management on plain strings is implemented actually: whereas arrays of strings are sent like binary
chunks of data (one byte for each byte of data buffer), plain strings are in fact terminated at their NUL
terminator.

The variable ETH_TXLENGTH will count the number of bytes transmitted by a successful execution of this function
(failed executions will leave the variable unchanged).

In case of successful result, if the function couldn't write anything (ETH_TXLENGTH reports 0 bytes length) the
variable ETH_ERROR might give further details about what could have gone wrong.

 ST-Script Guidelines 1.38

 Page 244 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the ethernet channels
management:

ETH_ERROR type ULINT
 access R

variable set with additional result information by several ETH_$$$ functions;
0 indicates a success; anything else is an error code;
this variable is updated by successful executions of the functions: ETH_PING,
ETH_$$$_CLOSE, ETH_$$$_DATALENGTH, ETH_$$$_READ$$$, ETH_$$$_WRITE;
it's used to report issues in case the function execution has been limited by
errors on the socket side; it's implemented to allow the programmer to work
with ethernet functions without the need to systematically disable blocking
errors, to face issues coming from remote connections

ETH_NUMBER type UDINT
 access R

gives the number of ethernet communication channels currently opened by
scripts

ETH_RXLENGTH type UDINT
 access R

gives the number of bytes acquired by the last successful execution of a read
function (see ETH_$$$_READBYTE, ETH_$$$_READBUFFER, ETH_$$$_READSTRING, and
ETH_$$$_READWSTRING);
failed calls won't affect this variable;
the given value could be 0 in case the invoked function found nothing to read
from the ethernet channel

ETH_TXLENGTH type UDINT
 access R

gives the number of bytes transmitted by the last successful execution of a
write function (see ETH_$$$_WRITE);
failed calls won't affect this variable

ETH_IPADDRESS type UDINT
 access R

gives the normalized IP address of a socket end-point: several functions use it
to add extended information to their returned data (normally given together
with ETH_IPPORT)
(see ETH_$$$_GETIPLOCAL, ETH_TCPC_GETIPSERVER, ETH_TCPS_GETIPCLIENT,
ETH_TCPS_DATALENGTH, ETH_TCPS_READ$$$, ETH_UDP_READ$$$);
see ETH_IP and ETH_GETIP for information about normalized addresses and ways
to convert them

ETH_IPPORT type UINT
 access R

gives the IP port number of a socket end-point: several functions use it to add
extended information to their returned data (normally given together with
ETH_IPADDRESS)
(as above, see ETH_$$$_GETIPLOCAL, ETH_TCPC_GETIPSERVER, ETH_TCPS_GETIPCLIENT,
ETH_TCPS_DATALENGTH, ETH_TCPS_READ$$$, ETH_UDP_READ$$$)

ETH_IP1 type UDINT

 ST-Script Guidelines 1.38

 Page 245 of 562

ETH_IP2 type UDINT
ETH_IP3 type UDINT
ETH_IP4 type UDINT
 access R

the variables give the 4 components of the IP address converted by the
function ETH_GETIP

 ST-Script Guidelines 1.38

 Page 246 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

ETHADDRESSANY 0 ETH_TCPS_OPEN, ETH_UDP_OPEN
ETHPORTAUTO 0 ETH_TCPC_OPEN

 ST-Script Guidelines 1.38

 Page 247 of 562

8. COMMON - LIBRARIES

8.1. Standard libraries

Standard libraries management is implemented for generic Windows DLLs and Linux Shared Objects.
The following are the available methods, all based on the assumption that the programmer knows exactly how
the library functions are defined, and is able to transport their interface with binary compatibility using ST data
types.
Libraries whose data binary configuration won't match that of the available ST types will not be usable in the
script.
Detailed instruction on how to match parameters and return data types are given below.

LIBRARY_LOAD

Loads a dynamic library.

LIBID = LIBRARY_LOAD (NAME)

input

NAME : ANY_STRING path and name of the library file

output

LIBID : UDINT a unique numeric identifier of the loaded library;
 this ID will have to be used in future calls to functions like LIBRARY_RELEASE and

LIBRARY_FXLOAD

External dynamic libraries can be loaded and used by the runtime (libraries such as Windows DLL or Linux
Shared Objects), provided:
- only plain functions are referenced (no classes, variables or any other kind of shared symbol),
- only ST compatible types are used for functions parameters and returns (see LIBRARY_FXLOAD).

example

ST_OPTION HANDLE_ERRORS;

VAR

 libid : UDINT;

 fxid : UDINT;

 ret_i : DINT;

 ret_b : ARRAY [100] OF USINT;

END_VAR;

libid := LIBRARY_LOAD ('/home/my/path/libtest.so');

IF FXRESULT = 0 THEN

 // fxid := LIBRARY_FXLOAD (libid, "FxVoid"); // defining a void function

 // fxid := LIBRARY_FXLOAD (libid, "FxInt", ret_i); // defining an 'int' function

 fxid := LIBRARY_FXLOAD (libid, "FxArray", ret_b); // a function returning an array

 IF FXRESULT = 0 THEN

 LIBRARY_FXCALL (fxid, ANY_TO_DINT(123), 'STR');

 // LIBRARY_FXRELEASE (fxid); // can be skipped since the <LIBRARY_RELEASE> already follows

 ELSE

 // handle load error

 ST-Script Guidelines 1.38

 Page 248 of 562

 END_IF;

 LIBRARY_RELEASE (libid);

ELSE

 // handle load error

END_IF;

 ST-Script Guidelines 1.38

 Page 249 of 562

LIBRARY_RELEASE

Releases a previously loaded dynamic library.

LIBRARY_RELEASE (LIBID)

input

LIBID : UDINT the numeric identifier of a library previously loaded by a LIBRARY_LOAD

The function releases the library itself along with all the resources allocated with it.

If still in use (still not released) all the loaded library's functions are released as well: this makes explicit calls to
LIBRARY_FXRELEASE completely optional (the function can still be used to make mechanics cleaner, or to handle
cases where too many different functions of too many libraries have to be contemporarily used, since there is a
limit to the number of library functions available at any given time).

See the example given with the LIBRARY_LOAD specifications.

 ST-Script Guidelines 1.38

 Page 250 of 562

LIBRARY_FXLOAD

Obtains a reference to a function exported by a dynamic library.

FXID = LIBRARY_FXLOAD (LIBID, NAME [, RETURN])

input

LIBID : UDINT the numeric identifier of a library previously loaded by a LIBRARY_LOAD
NAME : ANY_STRING name of the function that has to be retrieved from the LIBID library
RETURN : ANY [OPTIONAL] this parameter is used to declare the type of the value returned by

the specified function; it could be a variable or a value of well-
defined type, but the given value itself is not important: the only
thing that matters about this parameter is the type;

 when later invoked by the LIBRARY_FXCALL, this is the type used to
build its return value;

 if missing, the given function is expected to have no return (expected
to be <void>);

 it is important to declare the most appropriate type for the specified
function, not only to obtain a proper output value, but also to be able
to keep the best binary compatibility with the external library;

 errors in this declaration might lead to runtime crashes when the
referenced library function is invoked

output

FXID : UDINT a unique numeric identifier of the given function;
 this ID will have to be used in future calls to functions like LIBRARY_FXRELEASE and

LIBRARY_FXCALL

There is a limit to the maximum number of functions that can be loaded (currently set to 128).
If more functions are needed, then programmers might need to release some (LIBRARY_FXRELEASE) before to load
others.

In case of functions that return a value, the declared return type is required to have binary compatibility with
the actual returned value. In particular, types that can/should be used are:

SINT char
INT short int
DINT long int
LINT long long int
USINT | BYTE unsigned char
UINT | WORD unsigned short int
UDINT | DWORD unsigned long int
LUINT | LWORD unsigned long long int
REAL float
LREAL double

along with:
<ranges> the actual type is their base type
<enumeratives> considered to be UDINT (unsigned 32 bits)
<strings> of both ansi and wide type (STRING, WSTRING)
<arrays> of whatever dimension/s of the types above
<structures> containing fields of any of the types above

(structures of arrays and arrays of structures are welcome as well).
Mainly the only thing that matters is that the binary image of the returned value must match the binary image
of the declared type.

 ST-Script Guidelines 1.38

 Page 251 of 562

A limitation: POINTERS are NOT allowed (yet, since pointers are not supported yet by the ST engine).
Side effect of the matter is that, even though strings and arrays can be handled when directly returned by the
invoked functions (both strings and arrays are returned by library functions as pointers to their value memory
but can be implicitly converted in the pointed value content), when they are part of structures, they can't be
exchanged in pointer form, since that would require pointer management in the ST language itself. They should
be contained in their structure in full form instead.
See the following examples:

example

// "C" prototype of library function:

// char * StringFx ();

VAR

 ret_s : STRING [10];

END_VAR;

fxid := LIBRARY_FXLOAD (libid, "StringFx", ret_s); // This is ALLOWED

ret_s := LIBRARY_FXCALL (fxid); // plain strings are returned as pointer by the library

 // and are then implicitly converted by ST

// "C" prototype of library function:

// typedef struct mystr { char mystring[10+1]; } STR;

// STR StringFx ();

TYPE STR :

 STRUCT

 fld_s : STRING [10];

 END_STRUCT;

END_TYPE;

VAR

 ret_s : STR;

END_VAR;

fxid := LIBRARY_FXLOAD (libid, "StringFx", ret_s); // This is ALLOWED

ret_s := LIBRARY_FXCALL (fxid); // strings inside structures are returned in full form

 // by the library; the plain binary copy of the

 // structure content then works fine in ST

// "C" prototype of library function:

// typedef struct mystr { char * mystring; } STR;

// STR StringFx ();

TYPE STR :

 STRUCT

 fld_s : STRING [10];

 END_STRUCT;

END_TYPE;

VAR

 ret_s : STR;

END_VAR;

fxid := LIBRARY_FXLOAD (libid, "StringFx", ret_s); // This is FORBIDDEN

ret_s := LIBRARY_FXCALL (fxid); // strings held in structures in pointer form are

 // copied as such and can't be handled in ST

This last case is forbidden because the binary image of the "C" structure and that of the "ST" structure are
different. The same goes for arrays and for any kind of bufferized value passed in pointer form.

Another limitation: the total size of the returned value must not exceed a limit currently set to 1024 bytes.

See the example given with the LIBRARY_LOAD specifications.

 ST-Script Guidelines 1.38

 Page 252 of 562

 ST-Script Guidelines 1.38

 Page 253 of 562

LIBRARY_FXRELEASE

Releases a previously loaded library function.

LIBRARY_FXRELEASE (FXID)

input

FXID : UDINT the numeric identifier of a function previously loaded by a LIBRARY_FXLOAD

The function releases the function ID only.
Keep in mind that, after a release, the given ID might be reused by future LIBRARY_FXLOAD.

See the example given with the LIBRARY_LOAD specifications.

 ST-Script Guidelines 1.38

 Page 254 of 562

LIBRARY_FXCALL

Executes the function of a dynamic library.

[RETURN =] LIBRARY_FXCALL (FXID [, PARAM1 [, PARAM2 [, …]]])

input

FXID : UDINT the numeric identifier of a library function previously loaded by a LIBRARY_FXLOAD
PARAM# : ANY [OPTIONAL] these parameters are used to give the values that have to be passed

as parameters to the invoked function;
 their number must match that of the actual parameters of the

invoked function (no parameters at all is an allowed case as well of
course);

 as in the case of the function return type, it is important to use values
of the most appropriate types, in order to be able to keep the best
binary compatibility with the external library;

 errors in this list declaration might lead to runtime crashes due to
incompatibility with the invoked function

output

RETURN : ANY [OPTIONAL] this is the value returned by the invoked external function;
 formally the value could be of any type; at runtime the actual type

will be the one that was declared when the function was "loaded" by
the LIBRARY_FXLOAD;

 note that if the invoked function was declared to have no return,
then this LIBRARY_FXCALL will have no return as well

If parameters have to be passed to the invoked function, then it is important to keep the best binary
compatibility with the external library: number, type, size, endianity… everything about the passed parameters
should match the expected ones.
See LIBRARY_FXLOAD for notes about the types that can/should be used (for parameters as well as for returned
values). Types and limitations are the same.

A couple of more notes:
- being pointers not supported yet, output parameters can't be defined as well;
- as in the LIBRARY_FXLOAD return case, parameters found to be STRINGs or ARRAYs are implicitly automatically
converted and passed as pointers to the library, so at least this kind of content can be transferred; structures
instead are always exchanged by value;
- even the total size of the passed parameters (those directly fit in stack, excluded the pointed content) can't
exceed a limit, currently set to 1024 bytes.

See the example given with the LIBRARY_LOAD and the LIBRARY_FXLOAD specifications.

 ST-Script Guidelines 1.38

 Page 255 of 562

8.2. COM libraries

With the intent to support - at least in part - the functionalities of our current scripted projects, written in
VBScript, a family of functions is provided here for the management of COM objects registered in the system.
This implementation is limited to distributions for Windows PCs, since COM technology won't make sense in a
Linux environment.
The following are the available methods, all structured trying to mitigate the issues coming from the
fundamental incompatibility between the COM Variant types (natively part of the VBScript environment) and
the strict data types management of ST.
Most of the existing COM objects should be supported by the current implementation; some rare data type
match could be not handled yet, and might be considered for future improvements.

Detailed instruction on how to match parameters and returned data types are given below.
It is important to check out the whole 'Variant (COMVAR)' section introduction paragraphs, where most of the
data type-related information are gathered.

8.2.1. Libraries usage model (COMLIB)

Using COM objects in ST is not a trivial task: several steps should be followed in order to properly load and use
the involved objects, functions and data types.
The functions available in ST allow to:
- create and destroy the COM objects (see COMLIB_LOAD and COMLIB_RELEASE)
- load and release functions and properties made public by the COM (see COMLIB_FXLOAD and COMLIB_FXRELEASE)
- invoke the execution of the loaded COM functions (see COMLIB_FXCALL)
- access the values of the loaded COM properties (see COMLIB_PROPGET and COMLIB_PROPSET)

In short, the steps needed are the following. The process itself is pretty straightforward, but the details in the
datatypes management can become an issue sometimes:
- create the COM object using the ST COMLIB_LOAD;
 the name given to the function must be the one registered in the system for the desired object;
 save the returned ID since it will be needed in all subsequent calls involving this COM object;
- load and declare the functions (and properties) needed from the COM object using the ST COMLIB_FXLOAD;
 the given function name must correspond to the one published by the COM;
 the declared in/out data types must be the closest match possible for COM and ST; precise rules are given in

the COMVAR paragraphs below;
- the loaded functions and properties can now be used invoking the ST COMLIB_FXCALL, COMLIB_PROPGET and

COMLIB_PROPSET;
 make sure to invoke the functions using the correct data types, as needed and previously declared;
 COMVAR functions (COMVAR_$$$) might be needed in case specific unsupported types have to be exchanged

with the COM; also COMVAR functions can provide support for the COM arrays management; again, see
details in the COMVAR paragraphs below;

- release the COM functions (and properties) using the ST COMLIB_RELEASE when no longer needed;
- release the COM object using the ST COMLIB_RELEASE when no longer needed.

 ST-Script Guidelines 1.38

 Page 256 of 562

8.2.2. Variants (COMVAR)

The "Variant" is the basic generic data type upon which all the implementation of the COM interfaces is based.
Transporting values between ST and COM unmatching environments, always means that the system must be
able to transform ST values in Variants, and Variants in ST values. Since Variants could encapsulate data types
not natively recognizable by the ST engine, some additional management is required in some cases.

This additional management is not always needed:
sometimes ST values can be directly transformed in Variants, to be freely passed to the COM interface;
and sometimes Variants received from the COM interface can be directly transformed in ST values.
But it's also possible to face situations where the needed Variants are too complex or simply not compatible
with ST native types.

In our ST environment we define an object, namely a "COMVAR", able to carry out the functionalities of the
Variants (they effectively encapsulate Variants themselves) and fill up the gaps between ST and COM when it
comes to transporting values between the two worlds.
COMVARs are identified by numeric IDs, used wherever they are referenced in an ST function; they can be
freely created, destroyed, copied, read and written, provided the relation between their incapsulated Variant
value and the corresponding ST value is clearly stated somewhere in the script.

In this section a family of functions (COMVAR_$$$) is specified for this kind of treatment, sometimes needed to
prepare parameters and to examine results exchanged through COM functions.
Also important notes are given in the following paragraphs, regarding general rules and management of these
objects: these rules are fundamental in the management of both COMLIB functions and COMVAR objects, and
will be often referenced in this whole chapter.

 ST-Script Guidelines 1.38

 Page 257 of 562

8.2.2.1. Types declaration

Whenever a value has to be exchanged between a COMVAR and an ST variable, the better types match will
have to be explicitly declared. This is something that happens often:
- every time a value is written in a COMVAR or in one of its elements (in case of arrays),
- every time a value is read from a COMVAR or one of its elements,
- every time a parameter is passed to a COM function (or property),
- every time a return value is obtained from a COM function (or property).

All the ST native elementary types can be referenced, along with their array form, and can be freely used in
these exchanges with the COM Variants. Structured types instead are not supported by Variants and can't be
used in COM exchanges.
On the Variants side, a limited subset made of the main existing types is supported; the following are the
usable types (the data types the script is able to map from or to):
- VT_I1, VT_I2, VT_I4, VT_I8, VT_UI1, VT_UI2, VT_UI4, VT_UI8 (the main integer types),
- VT_R4, VT_R8 (the main floating-point types),
- VT_INT, VT_UINT, VT_DECIMAL (more integers interpreted in reads),
- VT_BOOL (boolean),
- VT_BSTR (all strings follow the OLESTR specification),
- VT_DATE (date and time information),
- VT_DISPATCH (the reference to a COM object interface).
Arrays (VT_ARRAY) are allowed as well. In case of arrays:
- multiple dimensions are allowed;
- they are all expected to be arrays of Variants (VT_ARRAY | VT_VARIANT);
- each element is a Variant itself and can have any of the supported types (further arrays excluded);
- strange forms of values layout, such as "byref" values, or encapsulations like "Variants of Variants of array of

Variants" and the likes, are not allowed; in case of needs, specific extensions to the allowed formats might be
considered in the future.

When types are specified in the script, the following codes can be used (see them in the <CONSTANTS> section as
well):

ST symbolic Notes

TYPESINT | All the elementary ST types have a dedicated code that can be
TYPEINT | used when a precise match is possible between ST and COM:
TYPEDINT | first of all, all the plain numeric integer and floating-point values
TYPELINT | have their obvious match
TYPEUSINT |
TYPEUINT |
TYPEUDINT |
TYPEULINT |
TYPEREAL |
TYPELREAL |

TYPETIME | these types can be used as 'pseudo-numeric' values;
TYPELTIME | the indication usually implies the conversion in unsigned integer values
TYPECHAR | of matching size
TYPEWCHAR | (for example, reading or writing a WCHAR is the same ad reading or writing a WORD,
TYPEBYTE | which is the same as reading or writing a UINT: they all map to a VT_UI2 Variant type)
TYPEWORD |
TYPEDWORD |
TYPELWORD |

TYPEBOOL used to define precise casts between the ST type and a Variant VT_BOOL

TYPESTRING used to define precise casts between the ST type and a Variant VT_BSTR
TYPEWSTRING used to define precise casts between the ST type and a Variant VT_BSTR

TYPEDATE | date/time types are used in reads to automatically convert VT_DATE

 ST-Script Guidelines 1.38

 Page 258 of 562

TYPETOD | Variants in specific ST formats
TYPELTOD | (not formally usable in writes, where a generic TYPEVDATE is expected; see below)
TYPEDT |
TYPELDT |

TYPEVDATE used with Variants containing a date (VT_DATE, with date and time information)

TYPEVOBJECT used with Variants containing the reference to a COM object (VT_DISPATCH);
 a Variant like this carries exactly the pointer to the "Dispatch" interface of the COM; its value is

transported in ST as a plain unsigned 32 bits integer (the numeric value of the pointer itself)

TYPECOMVAR used with Variants containing values that are too complex to be directly translated in ST; it's the
case, for example, of arrays made of elements of heterogeneous types; can be used also to mark
Variants that won't need to be used in ST but will have to travel simply from COM to COM;

 in this case the "real" value of a Variant is simply stored in a COMVAR (not directly assigned to an ST
variable); in place of this complex value, the ID of the COMVAR is assigned instead

TYPEARRAY used in combination with other types, to state that the actual value is an array of that type; never to
be used with TYPECOMVAR (in which case an array could be contained in a single COMVAR)

TYPEAUTO used to declare Variants with which automatic values casts can be applied by the system; in these
cases the script engine will try to use the best match possible for the given values; this declaration is
often, but not necessarily always, enough

TYPENONE in some cases used to mark values that should be excluded from the system computations; see
relevant functions below

 ST-Script Guidelines 1.38

 Page 259 of 562

8.2.2.2. Writing values (from ST to COM)

This is something that happens every time a parameter is passed to a COM function (or assigned to a COM
property), or every time a value is explicitly assigned to a COMVAR (or to an element of a COMVAR array).
When COM functions are involved, the parameter type is declared with the function COMLIB_FXLOAD; when
COMVARs assignments are involved instead, the value type is directly stated with the functions COMVAR_SET and
COMVAR_SETELEMENT (for all functions see specifications below).
In all cases, the declared type has to be intended as the desired type of the destination Variant, and will be
used as an indication of how to transform the given (well-defined) source ST values.
In particular, see the following:

ST symbolic Notes

TYPESINT settles the ST value in a VT_I1 Variant (8 bits signed integer value)
TYPEINT settles the ST value in a VT_I2 Variant (16 bits signed integer value)
TYPEDINT settles the ST value in a VT_I4 Variant (32 bits signed integer value)
TYPELINT settles the ST value in a VT_I8 Variant (64 bits signed integer value)
TYPEUSINT settles the ST value in a VT_UI1 Variant (8 bits unsigned integer value)
TYPEUINT settles the ST value in a VT_UI2 Variant (16 bits unsigned integer value)
TYPEUDINT settles the ST value in a VT_UI4 Variant (32 bits unsigned integer value)
TYPEULINT settles the ST value in a VT_UI8 Variant (64 bits unsigned integer value)
TYPEREAL settles the ST value in a VT_R4 Variant (32 bits floating-point value)
TYPELREAL settles the ST value in a VT_R8 Variant (32 bits floating-point value)

TYPETIME considered synonym of TYPEUDINT
TYPELTIME considered synonym of TYPEULINT
TYPECHAR considered synonym of TYPEUSINT
TYPEWCHAR considered synonym of TYPEUINT
TYPEBYTE considered synonym of TYPEUSINT
TYPEWORD considered synonym of TYPEUINT
TYPEDWORD considered synonym of TYPEUDINT
TYPELWORD considered synonym of TYPEULINT

TYPEBOOL settles the ST value in a VT_BOOL Variant

TYPESTRING | either the STRING or WSTRING declaration can be used to define a destination Variant string;
TYPEWSTRING | there is no difference between the two declarations, from any point of view they can
 | be considered synonyms: in any case the Variant will be a VT_BSTR, made of wide characters,
 | and in any case the acceptable source ST values are both STRINGs and WSTRINGs

TYPEDATE | these types are explicitly forbidden to be used in assignments to Variants, since there is
TYPETOD | no clear correspondence between the ST formats and a Variant type;
TYPELTOD | when dates and times have to be assigned, use the TYPEVDATE declaration instead (see below):
TYPEDT | the system will then be able to accommodate the given ST values in the most appropriate way
TYPELDT |

TYPEVDATE this declaration means that the destination Variant has to be of a VT_DATE type;
 the source ST value can be given in different forms; the allowed source types include DATE, DT, LDT,

TOD, LTOD (the Variant VT_DATE is able to contain this kind of information, even though precision
and range don't always match);

 also different numeric values could be given: only in case of LAX types, the system allows the
assignments of plain numbers directly in the date field of the Variant (of course the programmer is
supposed to know its exact numeric format, and how to handle it)

TYPEVOBJECT this declaration means that the ST value is providing an unsigned 32 bits integer containing the
reference to a COM object; the reference is actually the pointer to the "Dispatch" interface of the
object; the destination Variant will directly assume it as its value, along with a VT_DISPATCH type

TYPECOMVAR this declaration means that the ST value is actually providing the ID of a COMVAR, and that the value
of the COMVAR itself is the one that has to be assigned to the destination Variant;

 this is something that makes sense in case of parameters passed to a COM function: if the needed
parameter is too complex for an ST value to be passed directly, then it can be prepared in a
COMVAR first, and then passed as a reference to it;

 ST-Script Guidelines 1.38

 Page 260 of 562

 makes a lot less sense in case of assignments to COMVARs; not forbidden anyway: could be seen as
a way to copy values from a COMVAR to another (a COMVAR_COPY function exists anyway)

TYPEARRAY used in combination with all the types above, except TYPECOMVAR and those explicitly forbidden

TYPEAUTO used when the script is trusted to be able to automatically decide the best match between the given
ST value and the destination COM Variant (the destination type is automatically decided); in this
case:
- numeric values are mapped on standard VT_I1, VT_I2, VT_I4, VT_I8, VT_UI1, VT_UI2, VT_UI4, VT_UI8,

VT_R4, VT_R8
- all bitstrings except booleans (BYTEs, WORDs, DWORDs, LWORDs) are similarly mapped on the

numeric (unsigned integer) values of matching size
- the same goes for CHARs, WCHARs, TIMEs and LTIMEs, used as numeric values and mapped on the

matching unsigned integers
- booleans are mapped on VT_BOOL
- strings are mapped on VT_BSTR
- the remaining date/time types (DATE, DT, LDT, TOD, LTOD) are mapped on VT_DATE

TYPENONE NEVER used when ST to COM assignments happen

 ST-Script Guidelines 1.38

 Page 261 of 562

8.2.2.3. Reading values (from COM to ST)

This is something that happens every time a value is returned by a COM function (or retrieved from a COM
property), or every time a value is explicitly read from a COMVAR (or from an element of a COMVAR array).
When COM functions are involved, the return type is declared with the function COMLIB_FXLOAD; when
COMVARs readings are involved instead, the value type is directly stated with the functions COMVAR_GET and
COMVAR_GETELEMENT (for all functions see specifications below).
In all cases, the declared type has to be intended as the exact type formally needed by the destination ST value,
and will be used as an indication of how to create it starting from the given (well-defined) source Variant.
In particular, see the following:

ST symbolic Notes

TYPESINT settles in a SINT ST value any numeric source Variant
TYPEINT settles in an INT ST value any numeric source Variant
TYPEDINT settles in a DINT ST value any numeric source Variant
TYPELINT settles in a LINT ST value any numeric source Variant
TYPEUSINT settles in a USINT ST value any numeric source Variant
TYPEUINT settles in a UINT ST value any numeric source Variant
TYPEUDINT settles in a UDINT ST value any numeric source Variant
TYPEULINT settles in a ULINT ST value any numeric source Variant
TYPEREAL settles in a REAL ST value any numeric source Variant
TYPELREAL settles in a LREAL ST value any numeric source Variant

TYPETIME settles in a TIME ST value (as numeric value) any numeric source Variant
TYPELTIME settles in a LTIME ST value (as numeric value) any numeric source Variant

TYPECHAR settles in a CHAR ST value (as numeric value) any numeric source Variant
TYPEWCHAR settles in a WCHAR ST value (as numeric value) any numeric source Variant
TYPEBYTE settles in a BYTE ST value (as numeric value) any numeric source Variant
TYPEWORD settles in a WORD ST value (as numeric value) any numeric source Variant
TYPEDWORD settles in a DWORD ST value (as numeric value) any numeric source Variant
TYPELWORD settles in a LWORD ST value (as numeric value) any numeric source Variant

TYPEBOOL settles in a BOOL ST value a VT_BOOL Variant

TYPESTRING settles in a STRING ST value a VT_BSTR source Variant
TYPEWSTRING settles in a WSTRING ST value a VT_BSTR source Variant

TYPEDATE settles in a DATE ST value a VT_DATE source Variant
TYPETOD settles in a TOD ST value a VT_DATE source Variant
TYPELTOD settles in a LTOD ST value a VT_DATE source Variant
TYPEDT settles in a DT ST value a VT_DATE source Variant
TYPELDT settles in a LDT ST value a VT_DATE source Variant

TYPEVDATE this type is explicitly forbidden to be used in assignments to ST values (from Variants);
 explicitly defined assignments from Variants known to be carrying DATE information, should be

declared with the exact ST type they are supposed to be converted to (either TYPEDATE, TYPETOD,
TYPEDT, TYPELTOD or TYPELDT); a TYPEVDATE is too generic for an ST conversion;

 if an automatic conversion is desired, then a TYPEAUTO should be used instead

TYPEVOBJECT with this declaration the destination ST value will actually be a UDINT (unsigned 32 bits integer); it's
used to explicitly state that the value is coming from a Variant source containing the reference to a
COM object (a VT_DISPATCH carrying the pointer to the COM "Dispatch" interface);

 note that even though the obtained value is a UDINT, declaring it simply as a TYPEUDINT won't be
allowed: the programmer must declare to know that the returned value is a reference to a COM
object; not only to allow more strict validations over the source Variant value (when this type is
declared, the source Variant will be required to be carrying a COM IDispatch), but also to mark the
obtained value as one that will need special treatment: regardless their source (being it a return
value from a COM method, or a value read from a COMVAR) numeric values acquired as
TYPEVOBJECT are actually copies of references to COM objects and MUST be explicitly released with a
COMLIB_RELEASE when no longer needed;

 a lax declaration as TYPEAUTO is allowed for this kind of values: even in these cases the programmer
must be sure to know the nature of the obtained value and handle it properly

 ST-Script Guidelines 1.38

 Page 262 of 562

TYPECOMVAR this declaration means that the source Variant has to be stored in a COMVAR, rather than in the
destination ST value; to the destination ST value instead is assigned the value of the ID of the used
COMVAR (a 32 bits unsigned integer value);

 this is something that makes sense in case of values returned by COM function: if the result is too
complex for an ST value to be assigned directly, then it can be saved in an auxiliary COMVAR; the
system always uses the same conventional auxiliary COMVAR in these cases;

 it's not forbidden, but makes absolutely no sense, in case of direct reads from COMVARs

TYPEARRAY used in combination with all the types above, except TYPECOMVAR and those explicitly forbidden

TYPEAUTO used when the script is trusted to be able to automatically decide the best match between the given
COM Variant and the destination ST value (the destination type is automatically decided);

 the supported Variant types are the following:
- VT_I1, VT_I2, VT_INT, VT_I4, VT_I8, VT_UI1, VT_UI2, VT_UINT, VT_UI4, VT_DECIMAL, VT_UI8, VT_R4,

VT_R8: assigned to ST values of the corresponding numeric types;
- VT_BOOL: assigned to a BOOL ST value;
- VT_BSTR: assigned to a WSTRING ST value;
- VT_DATE: could become either a LDT (if the Variant value is carrying both date and time

information) or a TOD (if the Variant value only has a time component);
- VT_DISPATCH: the pointer to the COM object Dispatch interface is passed on as a plain numeric

value (unsigned 32 bits integer);
 note that if the source Variant is found to be carrying an array, the case is always treated as a

TYPECOMVAR: the Variant is copied in a conventional auxiliary COMVAR and the ID of the COMVAR is
passed on as the destination ST value (this is to avoid issues with Variant arrays potentially carrying
elements with heterogeneous types);

 if Variant arrays are known to be compatible with ST arrays, and a straight copy in an array ST
variable is desired, then their exact type should be declared, instead of using the generic TYPEAUTO

TYPENONE can be used as declaration of the return type of a COM function (see COMLIB_FXLOAD), to explicitly
state that the function will NOT return anything;

 must never be used while reading from COMVARs

 ST-Script Guidelines 1.38

 Page 263 of 562

8.2.3. Examples

The following is an example of usage of a couple of COM objects, meant to access values from an SQL
database:

example

VAR_INPUT

 timeFROM : STRING [100]; // IN: initial time range for query

 timeTO : STRING [100]; // IN: final time range for query

END_VAR;

VAR_OUTPUT

 valC1_DIFF : ULINT; // OUT: counter 1 difference result

 valC2_DIFF : ULINT; // OUT: counter 2 difference result

END_VAR;

VAR

 obj_CON : UDINT; // COM objects

 obj_REC : UDINT; //

 fxCon_OPEN : UDINT; // COM functions

 fxCon_CLOSE : UDINT; //

 fxRec_OPEN : UDINT; //

 fxRec_GETROWS : UDINT; //

 fxRec_CLOSE : UDINT; //

 strCONNECTION : STRING [256]; // DB connection string

 strQUERY : STRING [256]; // DB query string

 varRECORDS : UDINT; // Actual records prepared by query

 numRECORDS : UDINT; // Number of records generated by the query

 numCOLUMNS : UDINT; // Number of columns in generated records matrix

 valC1_FROM : ULINT; // Local values for query processing

 valC1_TO : ULINT; //

 valC2_FROM : ULINT; //

 valC2_TO : ULINT; //

END_VAR;

// COM - Create the COM objects needed for DB access

obj_CON := COMLIB_LOAD ('ADODB.Connection'); // Creating an ADODB Connection object

obj_REC := COMLIB_LOAD ('ADODB.RecordSet'); // Creating an ADODB RecordSet object

// COM - Access the needed functions of the loaded COMs

// Connection.Open > has no output; needs a string (connection string) in input

fxCon_OPEN := COMLIB_FXLOAD (obj_CON, 'Open', typenone, typestring);

// Connection.Close > has no output; has no input

fxCon_CLOSE := COMLIB_FXLOAD (obj_CON, 'Close', typenone);

// RecordSet.Open > has no output; needs a string (query string) and a COM object (connection COM) in input

fxRec_OPEN := COMLIB_FXLOAD (obj_REC, 'Open', typenone, typestring, typevobject);

// RecordSet.Close > has no output; has no input

fxRec_CLOSE := COMLIB_FXLOAD (obj_REC, 'Close', typenone);

// RecordSet.GetRows > returns a variant (COMVAR) with the array of records produced by a previous query

fxRec_GETROWS := COMLIB_FXLOAD (obj_REC, 'GetRows', typecomvar);

// DB - Open database connection

strCONNECTION := 'Provider=sqloledb;Data Source=DESKTOP-OVLQ28R\SQLEXPRESS;' +

 'Initial Catalog=MOULDING_DATA;Integrated Security=SSPI;';

COMLIB_FXCALL (fxCon_OPEN, strCONNECTION);

// Get range from input tags (maybe if not already given as function input parameters)

// timeFROM := TAG_GETVALUE ('Time_From_ UTC'); // Retrieve the initial range time from a tag

// timeTO := TAG_GETVALUE ('Time_To_ UTC'); // Retrieve the final range time from a tag

// DB - Execute the query

// (in our example we have a 'Date_Time' column, that we use to select a given range of records)

strQUERY := 'SELECT * FROM [MOULDING_DATA].[dbo].[ESA_Production] ' +

 'WHERE Date_Time Between $'' + timeFROM + '$' and $'' + timeTO + '$' order by Date_Time desc';

 ST-Script Guidelines 1.38

 Page 264 of 562

COMLIB_FXCALL (fxRec_OPEN, strQUERY, obj_CON);

// DB - Store the result of the query in a variable suitable to contain the array of records

// (the records are placed in a COMVAR, and the ID of the COMVAR is stored in varRECORDS)

ST_OPTION HANDLE_ERRORS; // Handle errors: the query could have generated an empty recordset

ERRORRESET();

varRECORDS := COMLIB_FXCALL (fxRec_GETROWS); // The returned <varRECORDS> is the ID of a COMVAR

ST_OPTION BLOCKING_ERRORS;

IF ERRNO = 0 THEN

 // DB - Retrieve the size of the matrix (records x fields) generated by the query

 numRECORDS := COMVAR_GETUBOUND (varRECORDS, 2) + 1; // Number of records = number of matrix rows

 numCOLUMNS := COMVAR_GETUBOUND (varRECORDS, 1) + 1; // Number of fields = number of matrix columns

 // Process the values acquired from DB

 // We have a Counter1 in column 2, and a Counter2 in column 4

 // We need the difference in those counters, between the 1
st

 and the last retrieved records

 valC1_FROM := COMVAR_GETELEMENT (varRECORDS, typeulint, numRECORDS - 1, 2);

 valC1_TO := COMVAR_GETELEMENT (varRECORDS, typeulint, 0, 2);

 valC2_FROM := COMVAR_GETELEMENT (varRECORDS, typeulint, numRECORDS - 1, 4);

 valC2_TO := COMVAR_GETELEMENT (varRECORDS, typeulint, 0, 4);

 valC1_DIFF := valC1_TO - valC1_FROM;

 valC2_DIFF := valC2_TO - valC2_FROM;

ELSE

 valC1_DIFF := 0;

 valC2_DIFF := 0;

END_IF;

// Save result in output tags (maybe if not provided as function output)

TAG_WRITEVALUE ('Counter1_DIFF', valC1_DIFF);

TAG_WRITEVALUE ('Counter2_DIFF', valC2_DIFF);

// DB - Close recordset and connection

COMLIB_FXCALL (fxRec_CLOSE);

COMLIB_FXCALL (fxCon_CLOSE);

// COM - Release the loaded COM functions

COMLIB_FXRELEASE (fxCon_OPEN);

COMLIB_FXRELEASE (fxCon_CLOSE);

COMLIB_FXRELEASE (fxRec_OPEN);

COMLIB_FXRELEASE (fxRec_CLOSE);

COMLIB_FXRELEASE (fxRec_GETROWS);

// COM - Release the loaded COM objects

COMLIB_RELEASE (obj_CON);

COMLIB_RELEASE (obj_REC);

 ST-Script Guidelines 1.38

 Page 265 of 562

COMLIB_LOAD

Loads and creates an instance of a COM object.

COMID = COMLIB_LOAD (NAME)

input

NAME : ANY_STRING name of the registered COM object

output

COMID : UDINT a unique numeric identifier of the created object;
 this ID is effectively the pointer to the IDispatch interface of the created COM

object instance;
 this ID will have to be used in future calls to functions like COMLIB_RELEASE and

COMLIB_FXLOAD

Registered COM objects, loaded from external dynamic libraries, can be created and used by the runtime only
in case of Windows platforms, since COM technology won't be available in Linux systems. Note that:
- only plain functions and public properties can be referenced,
- only a subset of ST compatible types can be used with properties and functions parameters; see the 'Variant
(COMVAR)' paragraphs for precise specifications about supported data types.

See the examples given at the beginning of this section.

 ST-Script Guidelines 1.38

 Page 266 of 562

COMLIB_RELEASE

Releases a previously created COM object.

COMLIB_RELEASE (COMID)

input

COMID : UDINT the numeric identifier of a COM object previously created by a COMLIB_LOAD

The function releases the COM object itself along with all the resources (allocated with it) that haven't been
already explicitly cleaned up.

If still in use (still not released) all the loaded COM's functions and properties are released: this makes explicit
calls to COMLIB_FXRELEASE completely optional (the function can still be used to make mechanics cleaner, or to
handle cases where too many different functions of too many COMs have to be contemporarily used, since
there is a limit to the number of COM functions available at any given time).

See the examples given at the beginning of this section.

 ST-Script Guidelines 1.38

 Page 267 of 562

COMLIB_FXLOAD

Obtains a reference to a function exported by a COM object.
Declares the data types of the values exchanged as parameters and function return.

FXID = COMLIB_FXLOAD (COMID, NAME [, RETURN [, PARAM1 [, PARAM2 [, …]]])

input

COMID : UDINT the numeric identifier of a COM previously loaded by a COMLIB_LOAD

NAME : ANY_STRING name of the function that has to be retrieved from the COMID object

RETURN : UDINT [OPTIONAL] a type identifier code, used to declare the type of the value returned
by the specified COM function;

 when later invoked by the COMLIB_FXCALL, this is the type used to build
its return value;

 if explicitly declared as TYPENONE (or generally if missing), the given
function is expected to have no return (expected to be <void>);

 it is still possible to have COM functions returning a value even if
declared with no explicit return type; in these cases the return is
treated as if explicitly declared as TYPEAUTO, and is automatically
converted in the most appropriate ST type by the engine;

 other supported codes include: TYPESINT, TYPEINT, TYPEDINT, TYPELINT,
TYPEUSINT, TYPEUINT, TYPEUDINT, TYPEULINT, TYPEREAL, TYPELREAL, TYPETIME,
TYPELTIME, TYPECHAR, TYPEWCHAR, TYPEBYTE, TYPEWORD, TYPEDWORD,
TYPELWORD, TYPEBOOL, TYPESTRING, TYPEWSTRING, TYPEDATE, TYPETOD,
TYPELTOD, TYPEDT, TYPELDT, TYPEVDATE, TYPEVOBJECT, TYPECOMVAR,
TYPEARRAY, TYPENONE (meaning that every type natively supported by
ST can be declared, along with few common types specific of the
VARIANT world);

 for details about automatic conversions and the best usage of these
type codes, see the specifications in the 'Variant (COMVAR)'
paragraphs

PARAM# : UDINT [OPTIONAL] a variable number of parameters, given as type identifier codes, used
to declare the types of the parameters expected by the specified
COM function;

 if missing, it doesn't necessarily mean that the declared function
needs no parameter (nor a number of parameters limited by the
number of given PARAM#): any extra undeclared parameter passed to
the function when later invoked for execution (COMLIB_FXCALL), is
implicitly accepted and treated as if declared like a TYPEAUTO,
meaning that its value is automatically handled by the ST and
converted in the VARIANT type most appropriate for the given ST
type;

 note that it is not possible to give PARAM# parameters and no RETURN
parameter: if the defined function needs explicit parameters
declaration and has no return, then it is mandatory to explicitly
declare a TYPENONE return type, before the list of the needed
parameters types;

 the usable type codes are the same listed above; again, see detailed
explanations about their usage in the 'Variant (COMVAR)' paragraphs

output

FXID : UDINT a unique numeric identifier of the given function;
 this ID will have to be used in future calls to functions like COMLIB_FXRELEASE and

COMLIB_FXCALL

 ST-Script Guidelines 1.38

 Page 268 of 562

There is a limit to the maximum number of functions that can be loaded (currently set to 128).
If more functions are needed, then programmers might need to release some (COMLIB_FXRELEASE) before to load
others.

A complete description of the supported type codes and their behaviour, along with instructions regarding how
and when they should be used, is given in the 'Variant (COMVAR)' paragraphs; in particular see the '8.2.2.1. Types
declaration' paragraph for general notes, the '8.2.2.2. Writing values (from ST to COM)' paragraph for
specifications about passing parameters to the function, and '8.2.2.3. Reading values (from COM to ST)'
paragraph for specifications about retrieving the value returned by the function.

As already stated, because of how optional parameters work, it is not possible to omit the RETURN declaration,
and at the same time specify PARAM# declarations: functions with parameters and no return will have to be
explicitly declared with a TYPENONE return type.
Also note that both the RETURN and the PARAM# declarations are not only optional because the function could
have no return or no parameters: explicit types declarations can be omitted if the programmer trusts the ST
engine to be able to automatically and properly convert the parameters and the returned value exchanged at
execution time (COMLIB_FXCALL) between ST and VARIANT types. From this point of view, omitting a type
declaration can be seen as leaving it virtually declared as TYPEAUTO, hence allowing it to be automatically
converted by the system.
As above, precise rules of automatic conversions are given in the specifications in the 'Variant (COMVAR)'
paragraphs. A precise explicit declaration of types though, for both input and output, is always strongly
recommended.

When this function is used to declare COM properties, instead of COM functions, it has to be noted that:
- the type given as RETURN is the one used for conversion of values obtained from a COMLIB_PROPGET;
- the type given as PARAM1 is the one used for conversion of values passed to a COMLIB_PROPSET.
Of course, aside from extremely extravagant COM implementations, these types are generally supposed to be
the same.

See the examples given at the beginning of this section.

 ST-Script Guidelines 1.38

 Page 269 of 562

COMLIB_FXRELEASE

Releases a previously loaded COM function.

COMLIB_FXRELEASE (FXID)

input

FXID : UDINT the numeric identifier of a function previously loaded by a COMLIB_FXLOAD

This method releases the function ID only.
Keep in mind that, after a release, the given ID might be reused by future COMLIB_FXLOAD.

See the examples given at the beginning of this section.

 ST-Script Guidelines 1.38

 Page 270 of 562

COMLIB_FXCALL

Invokes the execution of a COM object function.

[RETURN =] COMLIB_FXCALL (FXID [, PARAM1 [, PARAM2 [, …]]])

input

FXID : UDINT the numeric identifier of a COM function previously loaded by a COMLIB_FXLOAD

PARAM# : ANY [OPTIONAL] these parameters are used to give the values that have to be passed
as parameters to the invoked function;

 their number must match that of the actual parameters of the
invoked function (no parameters at all is an allowed case as well of
course);

 the number, order and types of the parameters should have been
declared with the COMLIB_FXLOAD, but the optionality of the
declaration and the possibility to define TYPEAUTO parameters, allows
for a lot of versatility; still, remember that, automatic or not, what
matters is the result of the conversion from ST to VARIANT (see
conversions rules in the 'Variant (COMVAR)' paragraphs), and what is
passed with this call must be the exact list of parameters needed by
the actual COM function; failure in that might lead to malfunctions
and, in the worst cases, to runtime crashes

output

RETURN : ANY [OPTIONAL] this is the value returned by the invoked COM function;
 formally the value could be of any type; at runtime the actual type

will be the one that was declared when the function was "loaded" by
the COMLIB_FXLOAD, or (in case of automatic conversion) the type that
the system deems to be the most appropriate for the VARIANT
received from the COM;

 note that if the invoked function was declared to have no return
(with an explicit TYPENONE), then this COMLIB_FXCALL will have no return
as well

If parameters have to be passed to the invoked function, then it is important to keep the best compatibility
with the external COM needs.
See COMLIB_FXLOAD, and the detailed specifications about types and conversions in the 'Variant (COMVAR)'
paragraphs, for notes about the types that can/should be used (for parameters as well as for returned values).

See the examples given at the beginning of this section.

 ST-Script Guidelines 1.38

 Page 271 of 562

COMLIB_PROPGET

Reads the value of a property member of a COM object.

RETURN = COMLIB_PROPGET (FXID)

input

FXID : UDINT the numeric identifier of a COM property previously loaded by a COMLIB_FXLOAD

output

RETURN : ANY this is the value currently contained in the COM property;
 formally the value could be of any type;
 at runtime the actual type will be the one that was declared as "return" type

when the property was "loaded" by the COMLIB_FXLOAD, or (in case of implicit or
explicit automatic conversion) the type that the system deems to be the most
appropriate for the VARIANT received from the COM;

 note that the accessed property must have been declared (even implicitly) with
a return type (it's impossible to read values of properties declared with a
TYPENONE return type)

See COMLIB_FXLOAD, and the detailed specifications about types and conversions in the 'Variant (COMVAR)'
paragraphs, for notes about the types that can/should be used.

 ST-Script Guidelines 1.38

 Page 272 of 562

COMLIB_PROPSET

Writes the value of a property member of a COM object.

COMLIB_PROPSET (FXID, VALUE)

input

FXID : UDINT the numeric identifier of a COM property previously loaded by a COMLIB_FXLOAD

VALUE : ANY this is the new value to be stored in the COM property;
 formally the value could be of any type;
 at runtime the actual type should be the one that was declared as "first

parameter" type when the property was "loaded" by the COMLIB_FXLOAD, or (in
case of implicit or explicit automatic conversion) the type appropriate for the
expected automatic conversion, as specified at the beginning of this section

See COMLIB_FXLOAD, and the detailed specifications about types and conversions in the 'Variant (COMVAR)'
paragraphs, for notes about the types that can/should be used.

 ST-Script Guidelines 1.38

 Page 273 of 562

COMVAR_CREATE

Creates a COMVAR (a VARIANT-like variable), usable with COM objects.

VARID = COMVAR_CREATE ()

output

VARID : UI32 the ID of the created COMVAR

As explained at the beginning of this section, we call a "COMVAR" a special object used by ST to encapsulate
the functionalities of the VARIANT data used by COM objects and interfaces.
This function creates one of these objects and returns its unique identifier. Every further access and
manipulation of that object will require the programmer to specify this ID in order to identify the specific
COMVAR that needs to be used.

Remember that after a COMVAR object has been explicitly created by this function, it will have to be cleaned
up and released after use (see COMVAR_DESTROY: there is no limit to the number of usable COMVARs, but the
related system resources must be freed when no longer needed).

Explicit vs Implicit COMVARs

Not only COMVAR objects can be explicitly created by this function: they could also be implicitly generated by
invocations of COM functions (COMLIB_FXCALL) declared to return a TYPECOMVAR, or when values are acquired
from similarly declared COM properties (COMLIB_PROPGET).
These implicit generations will not cause the creation of multiple COMVARs: instead one only system COMVAR
is dedicated to their storage, and new generations will simply overwrite old ones.
This means a couple of things the programmer is supposed to take note of:
- all these COMVARs will have the same ID (specifically their ID is always supposed to be 0, but programmers

should not rely on this constant);
- these COMVARs are NOT supposed to be cleaned up: overwritten values are automatically released by the

system when needed; trying to release these COMVARs will result in errors;
- since new generated COMVARs overwrite old ones, if objects returned by multiple calls of COM functions and

properties have to be retained, the programmer might need to explicitly copy (COMVAR_COPY) them in other
purposely created objects (an example is given below).

example

VAR

 com_obj : UDINT;

 com_fx : UDINT;

 com_var : UDINT;

 idx : UDINT;

 com_var_n : ARRAY [10] OF UDINT;

END_VAR;

com_obj := COMLIB_LOAD ('ComOBJ'); // A COM object

com_fx := COMLIB_FXLOAD (com_obj, 'ComFX', typecomvar); // A function returning a VARIANT (COMVAR)

// 1) If there is no need to keep the values

com_var := COMLIB_FXCALL (com_fx); // Multiple calls will always store the result

com_var := COMLIB_FXCALL (com_fx); // in the same COMVAR and will always return

com_var := COMLIB_FXCALL (com_fx); // the same COMVAR ID (0)

com_var := COMLIB_FXCALL (com_fx); // There is no need to release these COMVARs

 ST-Script Guidelines 1.38

 Page 274 of 562

// 2) If there is the need to keep and use multiple returned values

// - gather the values

FOR idx := 0 TO 9 DO

 com_var := COMLIB_FXCALL (com_fx); // call the COM function expected to return the VARIANT

 com_var_n[idx] := COMVAR_CREATE (); // create a COMVAR dedicated to the received value

 COMVAR_COPY (com_var, com_var_n[idx]); // store the received value as a copy

END_FOR;

 // - do whatever is needed with the saved values …

// - release the values

FOR idx := 0 TO 9 DO

 COMVAR_DESTROY (com_var_n[idx]); // destroy every copy explicitly created

END_FOR;

COMLIB_FXRELEASE (com_fx);

COMLIB_RELEASE (com_obj);

 ST-Script Guidelines 1.38

 Page 275 of 562

COMVAR_DESTROY

Cleans up and releases an existing COMVAR.

COMVAR_DESTROY (VARID)

input

VARID : UDINT the numeric identifier of a COMVAR object previously created by a COMVAR_CREATE;
 never to be used with IDs of COMVARs implicitly generated by COM invocations

Programmers must call a matching COMVAR_DESTROY for every COMVAR_CREATE explicitly called.
After destruction, the given ID might be reused and returned by future COMVAR_CREATE.

COMVARs implicitly generated as return values by COM invocations through COMLIB_FXCALL and COMLIB_PROPGET
don't need destruction; they are automatically taken care of by the system every time new invocations and
new generations occur.
See details about "implicit" COMVARs among the notes given above for the COMVAR_CREATE function. See the
given example as well.

 ST-Script Guidelines 1.38

 Page 276 of 562

COMVAR_CLEANUP

Cleans up the allocated value of an existing COMVAR.

COMVAR_CLEANUP (VARID)

input

VARID : UDINT the numeric identifier of a COMVAR object previously created by a COMVAR_CREATE,
or implicitly generated by COM invocations

Similar to a COMVAR_DESTROY from the point of view of the release of the value resources, but this function only
affects the value of the COMVAR, not the existence of the object itself.
The memory used is released and the value of the COMVAR is lost, but the COMVAR object itself still exists
after the cleanup; its VARID is retained and further COMVAR_CREATE won't be needed in order to use it again.

Note that this operation is not explicitly needed before a COMVAR_DESTROY, a COMVAR_COPY, or a
COMVAR_DIMARRAY, since all these kinds of access automatically cleanup the old COMVAR value.

 ST-Script Guidelines 1.38

 Page 277 of 562

COMVAR_COPY

Copies the value from an existing COMVAR to another.

COMVAR_COPY (SOURCEID, DESTID)

input

SOURCEID : UDINT the numeric identifier of the source COMVAR object

DESTID : UDINT the numeric identifier of the destination COMVAR object

Both the referenced COMVAR objects must exist; both could have been created by an explicit COMVAR_CREATE,
or implicitly generated by COM invocations.
This function automatically cleans up the content of the destination COMVAR and stores in it a copy of the
source one. A preemptive explicit COMVAR_CLEANUP of the destination is not needed.

 ST-Script Guidelines 1.38

 Page 278 of 562

COMVAR_DIMARRAY

Initializes an existing COMVAR value, making it a VARIANT-compatible array with given dimensions.

COMVAR_DIMARRAY (VARID, LOW1, HIGH1 [, LOW2, HIGH2 [, …]])

input

VARID : UDINT the numeric identifier of a COMVAR object previously created by a COMVAR_CREATE,
or implicitly generated by COM invocations

LOW# : UDINT [OPTIONAL] the lower bound of an Nth dimension of the array;
 must always be ≤ HIGH#
 formally optional, but at least an initial LOW1 must exist;
 note that LOW# and HIGH# are always given in pairs

HIGH# : UDINT [OPTIONAL] the upper bound of an Nth dimension of the array;
 must always be ≥ LOW#
 formally optional, but at least an initial HIGH1 must exist;
 note that LOW# and HIGH# are always given in pairs

This function is used to prepare a COMVAR to make it contain an array able to store elements compatible with
any kind of VARIANT value.
The function automatically cleans up the old content of the referenced COMVAR and stores in it simply an
empty array, that could be filled up later by accessing its individual elements. A preemptive explicit
COMVAR_CLEANUP of the COMVAR is not needed.

The created array could be defined with any number of dimensions.
A pair of bounds (LOW#, HIGH#) should be specified for each desired dimension.
Bounds for the 1st dimension are mandatory (since the array must have at least 1 dimension); further pairs are
optional, and depend on the actual need for the extra dimensions.

 ST-Script Guidelines 1.38

 Page 279 of 562

COMVAR_GETNUMDIM

Retrieves the number of dimensions of a COMVAR array.

NUMDIM = COMVAR_GETNUMDIM (VARID)

input

VARID : UDINT the numeric identifier of an existing COMVAR object;
 the COMVAR is supposed to have a value of ARRAY type

output

NUMDIM : UDINT the number of dimensions of the array contained in the referenced COMVAR

Using this function on a non-array COMVAR results in failure.

Using this function in combination with COMVAR_GETLBOUND and COMVAR_GETUBOUND, allows to browse the
definition of all the dimensions and sizes of any kind of array.

 ST-Script Guidelines 1.38

 Page 280 of 562

COMVAR_GETLBOUND

Retrieves the lower bound of a given dimension of a COMVAR array.

LBOUND = COMVAR_GETLBOUND (VARID, DIM)

input

VARID : UDINT the numeric identifier of an existing COMVAR object;
 the COMVAR is supposed to have a value of ARRAY type

DIM : UDINT the (base-1) index of a dimension of the array;
 the index must be: 1 ≤ DIM ≤ N
 (being N the number of dimensions of the referenced array)

output

LBOUND : UDINT the lower bound of the given dimension of the given COMVAR array

The referenced COMVAR must contain a valid array.
The specified DIM must match the range of the dimensions of the array.

 ST-Script Guidelines 1.38

 Page 281 of 562

COMVAR_GETUBOUND

Retrieves the upper bound of a given dimension of a COMVAR array.

UBOUND = COMVAR_GETUBOUND (VARID, DIM)

input

VARID : UDINT the numeric identifier of an existing COMVAR object;
 the COMVAR is supposed to have a value of ARRAY type

DIM : UDINT the (base-1) index of a dimension of the array;
 the index must be: 1 ≤ DIM ≤ N
 (being N the number of dimensions of the referenced array)

output

UBOUND : UDINT the upper bound of the given dimension of the given COMVAR array

The referenced COMVAR must contain a valid array.
The specified DIM must match the range of the dimensions of the array.

 ST-Script Guidelines 1.38

 Page 282 of 562

COMVAR_SET

Writes a value in a COMVAR.

COMVAR_SET (VARID, TYPE, VALUE)

input

VARID : UDINT the numeric identifier of an existing COMVAR object

TYPE : UDINT a type identifier code, used to declare the type of the value assigned to the
COMVAR (formally the type intended for the destination VARIANT created as result
of the assignment);

 note that this parameter is never optional; even in case of automatic ST-VARIANT
conversions, at least an explicit TYPEAUTO should be given;

 see detailed specifications regarding type codes, their usage and behaviour, in the
'Variant (COMVAR)' paragraphs; in particular, see notes from the '8.2.2.2. Writing
values (from ST to COM)' paragraph, where directions are given for conversions
applied when ST values are transformed in COM VARIANT values;

 see also the comments given for the COMLIB_FXLOAD function, where the declaration
of the function parameters is described

VALUE : ANY the new value to be assigned to the COMVAR;
 formally defined as "ANY", the type of this parameter at runtime should match the

definition given as TYPE above

The function automatically cleans up the old content of the referenced COMVAR, before the storage of the
new value takes effect. A preemptive explicit COMVAR_CLEANUP of the COMVAR is not needed.

 ST-Script Guidelines 1.38

 Page 283 of 562

COMVAR_SETELEMENT

Writes a value in an element of a COMVAR array.

COMVAR_SETELEMENT (VARID, TYPE, VALUE, INDEX1 [, INDEX2 [, …]])

input

VARID : UDINT the numeric identifier of an existing COMVAR object;
 the COMVAR is supposed to already have a value of ARRAY type

TYPE : UDINT a type identifier code, used to declare the type of the value assigned to the
COMVAR element (formally the type intended for the destination VARIANT
element created as result of the assignment);

 note that this parameter is never optional; even in case of automatic ST-VARIANT
conversions, at least an explicit TYPEAUTO should be given;

 see detailed specifications regarding type codes, their usage and behaviour, in the
'Variant (COMVAR)' paragraphs; in particular, see notes from the '8.2.2.2. Writing
values (from ST to COM)' paragraph, where directions are given for conversions
applied when ST values are transformed in COM VARIANT values;

 see also the comments given for the COMLIB_FXLOAD function, where the declaration
of the function parameters is described

VALUE : ANY the new value to be assigned to the COMVAR element;
 formally defined as "ANY", the type of this parameter at runtime should match the

definition given as TYPE above

INDEX# : UDINT [OPTIONAL] a variable number of parameters used to specify the indexes (base-0) of
the targeted element;

 there should be one INDEX# parameter for each dimension of the
referenced COMVAR array

The referenced COMVAR must already contain a valid array value.
This function merely replaces the value of one of its elements.
See COMVAR_DIMARRAY for hints about how to prepare a COMVAR with an initialized empty array.

 ST-Script Guidelines 1.38

 Page 284 of 562

COMVAR_GET

Reads the value from a COMVAR.

VALUE = COMVAR_GET (VARID, TYPE)

input

VARID : UDINT the numeric identifier of an existing COMVAR object

TYPE : UDINT a type identifier code, used to declare the type of the value read from the COMVAR
(formally the type intended for the destination ST value created as result of the
assignment);

 note that this parameter is never optional; even in case of automatic VARIANT-ST
conversions, at least an explicit TYPEAUTO should be given;

 see detailed specifications regarding type codes, their usage and behaviour, in the
'Variant (COMVAR)' paragraphs; in particular, see notes from the '8.2.2.3. Reading
values (from COM to ST)' paragraph, where directions are given for conversions
applied when COM VARIANT values are transformed in ST values;

 see also the comments given for the COMLIB_FXLOAD function, where the declaration
of the function return is described

output

VALUE : ANY the value read from the COMVAR to be assigned to the destination ST;
 formally defined as "ANY", the type of this parameter at runtime should match the

definition given as TYPE above

 ST-Script Guidelines 1.38

 Page 285 of 562

COMVAR_GETELEMENT

Reads the value from an element of a COMVAR array.

VALUE = COMVAR_GETELEMENT (VARID, TYPE, INDEX1 [, INDEX2 [, …]])

input

VARID : UDINT the numeric identifier of an existing COMVAR object
 the COMVAR is supposed to contain a value of ARRAY type

TYPE : UDINT a type identifier code, used to declare the type of the value read from the COMVAR
(formally the type intended for the destination ST value created as result of the
assignment);

 note that this parameter is never optional; even in case of automatic VARIANT-ST
conversions, at least an explicit TYPEAUTO should be given;

 see detailed specifications regarding type codes, their usage and behaviour, in the
'Variant (COMVAR)' paragraphs; in particular, see notes from the '8.2.2.3. Reading
values (from COM to ST)' paragraph, where directions are given for conversions
applied when COM VARIANT values are transformed in ST values;

 see also the comments given for the COMLIB_FXLOAD function, where the declaration
of the function return is described

INDEX# : UDINT [OPTIONAL] a variable number of parameters used to specify the indexes (base-0) of
the targeted element;

 there should be one INDEX# parameter for each dimension of the
referenced COMVAR array

output

VALUE : ANY the value read from the COMVAR element, to be assigned to the destination ST;
 formally defined as "ANY", the type of this parameter at runtime should match the

definition given as TYPE above

 ST-Script Guidelines 1.38

 Page 286 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the libraries management:

COMLIB errors

Some COM objects are able to provide detailed error information about the execution of their own methods;
with the following couple of variables it's possible to retrieve the meaningful parts.

COMLIB_ERRNO type UDINT
 access R/W

gives the result code of the last invoked COM method or property (filled up
after a COMLIB_FXCALL, COMLIB_PROPGET or COMLIB_PROPSET call); coding
conventions follow the Microsoft COM standards;
always matches the error message stored in COMLIB_ERRMSG (see below);
0 (zero) indicates a successful invocation; anything else is an error;
note that in case of error, the standard ST error management and variables
will be operating too, so meaningful (but less detailed) information could be
retrieved from the standard FXRESULT, ERRNO and ERRMSG variables; also note
that this kind of information is accessible only if the option ST_OPTION

HANDLE_ERRORS is currently set, otherwise the error presence would halt the
script execution;
important: this variable is set only if error information are actually provided
by the COM object and should be intended as an extension of the standard
error information; because of this, and since errors could happen at
different levels as well, programmers should not rely on this value to know
whether errors happened or not;

COMLIB_ERRMSG type WSTRING
 access R/W

gives a textual description of the error currently stored in COMLIB_ERRNO (see
above for details);
in case of successful executions this variable is reset to an empty string

 ST-Script Guidelines 1.38

 Page 287 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

COMLIBNOFX 0xFFFFFFFF *** COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
(returned by COMLIB_FXLOAD along with an error in case nothing was loaded)

TYPESINT 1 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEINT 2 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEDINT 3 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPELINT 4 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEUSINT 5 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEUINT 6 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEUDINT 7 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEULINT 8 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEREAL 9 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPELREAL 10 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPETIME 11 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPELTIME 12 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEDATE 13 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPETOD 14 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPELTOD 15 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEDT 16 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPELDT 17 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPESTRING 18 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEWSTRING 19 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPECHAR 20 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEWCHAR 21 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEBOOL 22 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEBYTE 23 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEWORD 24 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEDWORD 25 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPELWORD 26 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$

TYPEVDATE 0x1007 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPEVOBJECT 0x1009 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPECOMVAR 0x100C COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$

TYPEARRAY 0x2000 COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$

TYPEAUTO 0x0FFE COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$
TYPENONE 0x0FFF COMLIB_FXLOAD, COMLIB_FXCALL, COMVAR_SET$$$, COMVAR_GET$$$

 ST-Script Guidelines 1.38

 Page 288 of 562

9. COMMON - PRINT

Printing

<TODO>

 ST-Script Guidelines 1.38

 Page 289 of 562

PDF

Few general notes about PDF documents production:
- only one document at a time can be produced; old documents must be closed (PDF_CLOSE) before new ones

can be created (PDF_OPEN);
- most of the given measures (coordinates and sizes) are given in units equal to 1/72nd of inch (given in floating-

point, so fractional measures are allowed);
- the only exception is the size of the fonts, which is expressed in points when selected (PDF_SETFONTSIZE; again

fractional measures are allowed); note that there is no automatic relation between the fonts sizes in points,
and the corresponding physical measures in 72nd of inch, since it depends entirely on the definition of the
fonts themselves (for example the height of a "Tunga" string of a given number of points is almost twice the
height of a "Stencil" string of the same number of points);

- the coordinates (0,0) correspond to the upper-left corner of the document page; positive axis go towards the
right of the page and towards the bottom of the page, so that the coordinates of the bottom-right corner
correspond to the size of the page itself (PDF_PAGEWIDTH,PDF_PAGEHEIGHT);

- selected colors affect all the drawing directives (both geometric and texts);
- selected line sizes affect all geometric drawing directives (make no sense for texts).

PDF_OPEN

Starts the creation of a new PDF document.

PDF_OPEN (FILENAME [, PWDUSER [, PROTCTX [, PWDOWNER]]])

input

FILENAME : ANY_STRING name of the newly created PDF file
PWDUSER : ANY_STRING [OPTIONAL] protection parameter: user password;

used to apply encryption and a password to the document;
users will have to enter it to open the document

PROTCTX : ANY_INT [OPTIONAL] protection parameter: protected contexts flags;
used to specify a list of management contexts that can be
disabled in the produced document; see the flags list below

PWDOWNER : ANY_STRING [OPTIONAL] protection parameter: owner password
used to specify a further password that users can give to re-
enable the contexts disabled by the parameter above

Only one PDF document at a time can be produced.
This function can be used only if no other document is currently under construction.
Creations started with this method are expected to be closed and finalized with a call to PDF_CLOSE.

The created document starts with:
- an empty page, in vertical layout, size A4,
embedding the following defaults:
- a BLACK color for all drawing directives,
- a line width (for geometric directives) of 1/72nd of inch,
- an ARIAL (normal) font, with a size of 10 points (no bold/italic/underline attributes).

As soon as the document is created, the variables PDF_PAGEWIDTH and PDF_PAGEHEIGHT assume the values of the
default page size (A4), while the variables PDF_FONTHEIGHT, PDF_FONTASCENT and PDF_FONTDESCENT assume the
values of the corresponding metrics of the default font (Arial 10pt).

 ST-Script Guidelines 1.38

 Page 290 of 562

Protection

If the optional protection parameters are given, then the document is produced encrypted, and different
contexts can be chosen to be disabled or protected by password:
- the PWDUSER is a password that will be needed to open the document;
- the PROTCTX is a bitstring of flags that can be used to specify different contexts of the document management

(such as the ability to print, edit, add comments, and so on) that have to be disabled;
- the PWDOWNER is a password that can be used to re-enable the contexts that could have been disabled by the

flags above;
 this owner password will have to be entered by the user when the document is opened, and that will only be

possible if also a valid (not empty) PWDUSER was provided for the document creation.

So, for the different possible combination of the provided protection parameters:
- (FILENAME)

 if no optional parameter is given, then no encryption and no restriction will be applied;
- (FILENAME, PWDUSER)

 if only the PWDUSER is given, the document will require a password to be opened;
 no further restriction will be applied;
 if an empty password is provided, then no protection is applied, as if the parameter were missing;
- (FILENAME, PWDUSER, PROTCTX)

 if also PROTCTX flags are given, then the specified contexts will be disabled;
 the PWDUSER parameter will follow its own independent rules, as above, and can be given either as a valid or

as an empty password;
- (FILENAME, PWDUSER, PROTCTX, PWDOWNER)

 if also the PWDOWNER is given, then the user will have the chance to unlock the contexts protected by the
PROTCTX flags;

 this effect will be strictly dependent on the existence of the first two parameters: the 'unlock' action will only
have effect on the contexts explicitly disabled by the PROTCTX, and will only be possible if a password will be
asked to the user, which - again - will only happen if a valid PWDUSER was given as well;

 in other words, all three parameters are required: when the document is opened, a password is asked; if the
PWDUSER is entered, then the opened document will have its selected contexts disabled; if the PWDOWNER is
entered instead, those contexts will be enabled.

As for the list of the acceptable flags that can be specified in the PROTCTX parameter (combined in 'OR' in a
bitstring), according to the PDF standards, the following are the supported values (see in the <CONSTANTS>
section the corresponding numeric values if needed):

PDFCTXPRINT print the document
PDFCTXEDIT modify the document besides annotations, form fields or changing pages
PDFCTXCOPY extract text and graphic
PDFCTXEDITNOTES add or modify text annotations or form fields
PDFCTXFILLANDSIGN fill in existing form or signature fields
PDFCTXACCESSIBLE extract text and graphics to support user with disabilities
PDFCTXDOCASSEMBLY assemble the document: insert, create, rotate delete pages or add bookmarks
PDFCTXHIGHPRINT print a high-resolution version of the document

PDFCTXALL combine all the contexts above; only plain read will be allowed

 ST-Script Guidelines 1.38

 Page 291 of 562

PDF_CLOSE

Finalizes the production of the current PDF document.

PDF_CLOSE ()

Only usable when a PDF document is actually being produced, started with a previous call to PDF_OPEN.
After this function has been used to close a document, a further open can be invoked to create another.

As soon as the document is closed, the variables PDF_PAGEWIDTH, PDF_PAGEHEIGHT, PDF_FONTHEIGHT, PDF_FONTASCENT
and PDF_FONTDESCENT are automatically reset to 0.

 ST-Script Guidelines 1.38

 Page 292 of 562

PDF_NEWPAGE

Adds a new page to the PDF document.

PDF_NEWPAGE ()

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The old page is left and won't be accessible anymore.
All subsequent drawing directives will be part of the new page.

 ST-Script Guidelines 1.38

 Page 293 of 562

PDF_SETCOLOR

Sets a new color, to be used in all subsequent drawing directives.

PDF_SETCOLOR (COLOR)

input

COLOR : UDINT the new color,
 given in RGB form: 0x00BBGGRR

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given color will be valid for both geometric and text directives.

See the following example for a combined usage of colors and lines
(the given example draws a series of lines, in a circular pattern, of variable size and colors):

example

VAR

 rad : LREAL := 60.0;

 steps : LREAL := 400.0;

 astep : LREAL;

 wstep : LREAL;

 ang : LREAL;

 wdt : LREAL;

 cs1, sn1, cs2, sn2 : LREAL;

 rgb1, rgb2, cmp : UDINT;

END_VAR;

PDF_OPEN ('D:\stpdf.pdf');

astep := _PI / steps;

ang := 0;

wstep := 40.0 / steps;

wdt := 0;

WHILE (ang <= _PI) DO

 cs2 := COS(ang) * rad;

 sn2 := SIN(ang) * rad;

 IF (ang > 0) THEN

 PDF_SETLINEWIDTH (wdt);

 cmp := ANY_TO_UDINT (ang / _PI * 255);

 rgb1 := cmp + (255-cmp) * 256;

 rgb2 := cmp + (255-cmp) * 65536;

 PDF_SETCOLOR (rgb1);

 PDF_DRAWLINE (100 + sn1, 150 - cs1, 100 + sn2, 150 - cs2);

 PDF_SETCOLOR (rgb2);

 PDF_DRAWLINE (100 - sn1, 150 - cs1, 100 - sn2, 150 - cs2);

 END_IF;

 cs1 := cs2;

 sn1 := sn2;

 ang := ang + astep;

 wdt := wdt + wstep;

END_WHILE;

PDF_CLOSE ();

 ST-Script Guidelines 1.38

 Page 294 of 562

PDF_SETLINEWIDTH

Sets a new line width, to be used in all subsequent geometric drawing directives.

PDF_SETLINEWIDTH (WIDTH)

input

WIDTH : ANY_NUM the new width,
 given in 72nd of inch;
 allowed to specify even fractional parts of the measure unit

Only usable if a PDF document is actually being produced (see PDF_OPEN).

See a usage example given along with the PDF_SETCOLOR description.

 ST-Script Guidelines 1.38

 Page 295 of 562

PDF_SETFONT

Sets up a whole new font, with a full set of given attributes.

PDF_SETFONT (FONT, SIZE, BOLD, ITALIC, UNDERLINE)

input

FONT : ANY_STRING the name of the font
SIZE : ANY_NUM the size of the font (in points)
BOLD : BOOL the font bold attribute
ITALIC : BOOL the font italic attribute
UNDERLINE : BOOL the font underline attribute

Only usable if a PDF document is actually being produced (see PDF_OPEN).
All subsequent calls to text drawings will use the new font.
Usable when several properties of the font need their selection; if only single attributes need an adjustment,
dedicated functions are available as well (see PDF_SETFONT$$$ below).

As soon as the selection is done, the variables PDF_FONTHEIGHT, PDF_FONTASCENT and PDF_FONTDESCENT assume the
values of the corresponding metrics of the selected font.

Note that font selections might weight a lot in the final size of the produced PDF file.

See the following example for a combined usage of fonts, metrics and geometric directives:

example

VAR

 xx : LREAL := 100.0;

 yy : LREAL := 100.0;

 st : WSTRING [20] := "123aAbBpPwW^qgè,|";

END_VAR;

FUNCTION PdfOutText // gathers a batch of instruction

 // for a text output

 VAR_INPUT

 size : LREAL;

 END_VAR;

 VAR

 width : LREAL;

 END_VAR;

 PDF_SETFONTSIZE (size); // set the size of the font

 PDF_SETCOLOR (16#808080); // draw texts in gray

 PDF_DRAWTEXT (xx, yy, st);

 width := PDF_GETTEXTWIDTH (st); // get text width for frame

 PDF_SETCOLOR (16#000000); // draw rectangle in black

 PDF_DRAWRECTANGLE (xx, yy, xx + width, yy + PDF_FONTHEIGHT, FALSE);

 PDF_SETCOLOR (16#0000FF); // draw base line in red

 PDF_DRAWLINEH (xx, yy + PDF_FONTASCENT, width);

 yy := yy + PDF_FONTHEIGHT + 10;

END_FUNCTION;

PDF_OPEN ('D:\stpdf.pdf');

PDF_SETLINEWIDTH (0.1); // thin frame and base line

PdfOutText (30); // text 1: arial (default)

 ST-Script Guidelines 1.38

 Page 296 of 562

PDF_SETFONTNAME ("Courier New");

PdfOutText (30); // text 2: courier

PDF_SETFONTNAME ("Broadway");

PdfOutText (30); // text 3: broadway

PDF_SETFONTNAME ("Stencil");

PdfOutText (30); // text 4: stencil

PDF_CLOSE ();

the given example draws 4 texts with different fonts (the 1st being the default Arial), with same size
(30), surrounds them with a rectangular frame, marking their exact dimensions, and outlines their
base lines, as given by the known font metrics:

 ST-Script Guidelines 1.38

 Page 297 of 562

PDF_SETFONTNAME

Selects a new font.

PDF_SETFONTNAME (FONT)

input

FONT : ANY_STRING the name of the font

Only usable if a PDF document is actually being produced (see PDF_OPEN).
All subsequent calls to text drawings will use the new font.
Only the font facename is given to select a whole new font; the other font attributes are preserved from the
last dedicated selections.

As soon as the selection is done, the variables PDF_FONTHEIGHT, PDF_FONTASCENT and PDF_FONTDESCENT assume the
values of the corresponding metrics of the selected font.

Note that font selections might weight a lot in the final size of the produced PDF file.

See a usage example given along with the PDF_SETFONT description.

 ST-Script Guidelines 1.38

 Page 298 of 562

PDF_SETFONTSIZE

Selects a new font size.

PDF_SETFONTSIZE (SIZE)

input

SIZE : ANY_NUM the size of the font (in points)

Only usable if a PDF document is actually being produced (see PDF_OPEN).
All subsequent calls to text drawings will use the new size.
Only the font size is affected; the other font attributes are preserved from the last dedicated selections.

As soon as the selection is done, the variables PDF_FONTHEIGHT, PDF_FONTASCENT and PDF_FONTDESCENT assume the
values of the corresponding metrics of the selected font.

Note that font selections might weight a lot in the final size of the produced PDF file.

See a usage example given along with the PDF_SETFONT description.

 ST-Script Guidelines 1.38

 Page 299 of 562

PDF_SETFONTBOLD

Selects a new font bold attribute.

PDF_SETFONTBOLD (BOLD)

input

BOLD : BOOL the font bold attribute

Only usable if a PDF document is actually being produced (see PDF_OPEN).
All subsequent calls to text drawings will use the new attribute state.
Only the given state is affected; the other font attributes are preserved from the last dedicated selections.

Note that font selections might weight a lot in the final size of the produced PDF file.

 ST-Script Guidelines 1.38

 Page 300 of 562

PDF_SETFONTITALIC

Selects a new font italic attribute.

PDF_SETFONTITALIC (ITALIC)

input

ITALIC : BOOL the font italic attribute

Only usable if a PDF document is actually being produced (see PDF_OPEN).
All subsequent calls to text drawings will use the new attribute state.
Only the given state is affected; the other font attributes are preserved from the last dedicated selections.

Note that font selections might weight a lot in the final size of the produced PDF file.

 ST-Script Guidelines 1.38

 Page 301 of 562

PDF_SETFONTUNDERLINE

Selects a new font underline attribute.

PDF_SETFONTUNDERLINE (UNDERLINE)

input

UNDERLINE : BOOL the font underline attribute

Only usable if a PDF document is actually being produced (see PDF_OPEN).
All subsequent calls to text drawings will use the new attribute state.
Only the given state is affected; the other font attributes are preserved from the last dedicated selections.

Note that font selections might weight a lot in the final size of the produced PDF file.

 ST-Script Guidelines 1.38

 Page 302 of 562

PDF_DRAWTEXT

Draws a text in the PDF document.

PDF_DRAWTEXT (POSX, POSY, TEXT)

input

POSX : ANY_NUM X coordinate of the left margin of the drawn text;
 given in 72nd of inch
POSY : ANY_NUM Y coordinate of the top margin of the drawn text;
 given in 72nd of inch
TEXT : ANY_STRING the text string drawn in the document

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given text will be drawn in the current page of the document, at the given coordinates (upper left corner),
using the current color and the current font.

See a usage example given along with the PDF_SETFONT description.

 ST-Script Guidelines 1.38

 Page 303 of 562

PDF_DRAWLINE

Draws a line in the PDF document.

PDF_DRAWLINE (FROMX, FROMY, TOX, TOY)

input

FROMX : ANY_NUM X coordinate of the initial segment point;
 given in 72nd of inch
FROMY : ANY_NUM Y coordinate of the initial segment point;
 given in 72nd of inch
TOX : ANY_NUM X coordinate of the final segment point;
 given in 72nd of inch
TOY : ANY_NUM Y coordinate of the final segment point;
 given in 72nd of inch

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given line will be drawn in the current page of the document, at the given coordinates, using the current
color and the current line width.

See a usage example given along with the PDF_SETCOLOR description.

 ST-Script Guidelines 1.38

 Page 304 of 562

PDF_DRAWLINEH

Draws a horizontal line in the PDF document.

PDF_DRAWLINEH (FROMX, FROMY, LENGTH)

input

FROMX : ANY_NUM X coordinate of the initial segment point;
 given in 72nd of inch
FROMY : ANY_NUM Y coordinate of the initial segment point;
 given in 72nd of inch
LENGTH : ANY_NUM total length of the drawn segment;
 given in 72nd of inch;

can be negative to draw lines towards lower coordinates (towards the
right of the page)

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given line will be drawn in the current page of the document, at the given coordinates, using the current
color and the current line width.

 ST-Script Guidelines 1.38

 Page 305 of 562

PDF_DRAWLINEV

Draws a vertical line in the PDF document.

PDF_DRAWLINEV (FROMX, FROMY, LENGTH)

input

FROMX : ANY_NUM X coordinate of the initial segment point;
 given in 72nd of inch
FROMY : ANY_NUM Y coordinate of the initial segment point;
 given in 72nd of inch
LENGTH : ANY_NUM total length of the drawn segment;
 given in 72nd of inch;

can be negative to draw lines towards lower coordinates (towards the
top of the page)

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given line will be drawn in the current page of the document, at the given coordinates, using the current
color and the current line width.

 ST-Script Guidelines 1.38

 Page 306 of 562

PDF_DRAWRECTANGLE

Draws a rectangle in the PDF document.

PDF_DRAWRECTANGLE (FROMX, FROMY, TOX, TOY, FILL)

input

FROMX : ANY_NUM X coordinate of a corner of the rectangle;
 given in 72nd of inch
FROMY : ANY_NUM Y coordinate of the same (FROMX) corner of the rectangle;
 given in 72nd of inch
TOX : ANY_NUM X coordinate of the opposite (to FROM) corner of the rectangle;
 given in 72nd of inch
TOY : ANY_NUM Y coordinate of the opposite (to FROM) corner of the rectangle;
 given in 72nd of inch
FILL : BOOL FALSE if only the empty border of the rectangle has to be drawn;
 TRUE if a filled rectangular box has to be drawn

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given rectangle will be drawn in the current page of the document, at the given coordinates, using the
current color and the current line width (line width being meaningful in case of empty shape only).

 ST-Script Guidelines 1.38

 Page 307 of 562

PDF_DRAWCIRCLE

Draws a circle in the PDF document.

PDF_DRAWCIRCLE (CENTERX, CENTERY, RADIUS, FILL)

input

CENTERX : ANY_NUM X coordinate of the center of the circle;
 given in 72nd of inch
CENTERY : ANY_NUM Y coordinate of the center of the circle;
 given in 72nd of inch
RADIUS : ANY_NUM radius of the circle;
 given in 72nd of inch
FILL : BOOL FALSE if only an empty circumference has to be drawn;
 TRUE if a filled circular disc has to be drawn

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given circle will be drawn in the current page of the document, at the given coordinates, using the current
color and the current line width (line width being meaningful in case of empty shape only).

 ST-Script Guidelines 1.38

 Page 308 of 562

PDF_DRAWELLIPSE

Draws an ellipse in the PDF document.

PDF_DRAWELLIPSE (FROMX, FROMY, TOX, TOY, FILL)

input

FROMX : ANY_NUM X coordinate of a corner of the rectangle that contains the ellipse
 (say the X coordinate of the leftmost point of the ellipse);
 given in 72nd of inch
FROMY : ANY_NUM Y coordinate of the same (FROMX) corner of the containing rectangle
 (say the Y coordinate of the uppermost point of the ellipse);
 given in 72nd of inch
TOX : ANY_NUM X coordinate of the opposite (to FROM) corner of the rectangle
 (say the X coordinate of the rightmost point of the ellipse);
 given in 72nd of inch
TOY : ANY_NUM Y coordinate of the opposite (to FROM) corner of the rectangle
 (say the Y coordinate of the lowermost point of the ellipse);
 given in 72nd of inch
FILL : BOOL FALSE if only the empty border of the ellipse has to be drawn;
 TRUE if a filled elliptical disc has to be drawn;

Only usable if a PDF document is actually being produced (see PDF_OPEN).
The given ellipse will be drawn in the current page of the document, at the given coordinates, using the current
color and the current line width (line width being meaningful in case of empty shape only).

 ST-Script Guidelines 1.38

 Page 309 of 562

PDF_DRAWIMAGE

Draws an image in the PDF document.

PDF_DRAWIMAGE (POSX, POSY, WIDTH, HEIGHT, FILENAME)

input

POSX : ANY_NUM X coordinate of the upper-left corner of the image;
 given in 72nd of inch
POSY : ANY_NUM Y coordinate of the upper-left corner of the image;
 given in 72nd of inch
WIDTH : ANY_NUM width of the drawn image;
 given in 72nd of inch;
 can be 0 (together with HEIGHT) for an automatic management of the size
HEIGHT : ANY_NUM height of the drawn image;
 given in 72nd of inch;
 can be 0 (together with WIDTH) for an automatic management of the size
FILENAME : ANY_STRING name of the file containing the needed image

Only usable if a PDF document is actually being produced (see PDF_OPEN).

If a size of (0,0) is given, then the size is handled automatically:
the system keeps the original size of the image (as given by the imported file) as long as there is enough room
in the page, starting from the given position;
if there is not enough room, then the image is scaled down to fit within the page borders, keeping the original
aspect ratio.

The images implementation only supports PNG and JPG formats.

See the following example as an illustration of how to manage pictures, sizes and automatic stretches:

example

VAR

 pw : LREAL := 330;

 ph : LREAL := 223;

 px : LREAL := 100.0;

 py : LREAL := 100.0;

END_VAR;

PDF_OPEN ('D:\stpdf.pdf');

pw := pw / 2;

ph := ph / 2;

PDF_DRAWIMAGE (px, py, pw, ph, 'D:\pic.png'); // Draw few images with different sizes

px := px + pw + 10;

PDF_DRAWIMAGE (px, py, pw/2, ph/2, 'D:\pic.png');

px := px + pw/2 + 10;

PDF_DRAWIMAGE (px, py, pw/3, ph/3, 'D:\pic.png');

px := px + pw/3 + 10;

PDF_DRAWIMAGE (150, 550, 0, 0, 'D:\pic.png'); // draw images with automatic size

PDF_DRAWIMAGE (450, 550, 0, 0, 'D:\pic.png');

PDF_DRAWIMAGE (150, 750, 0, 0, 'D:\pic.png');

PDF_CLOSE ();

 ST-Script Guidelines 1.38

 Page 310 of 562

the given example shows how images can be scaled when drawn in the document,
and how they can be automatically resized when near page edges

 ST-Script Guidelines 1.38

 Page 311 of 562

PDF_GETTEXTWIDTH

Retrieves the width of a given text.

WIDTH = PDF_GETTEXTWIDTH (TEXT)

input

TEXT : ANY_STRING text to be measured

output

WIDTH : LREAL calculated text width;
 given in 72nd of inch

Only usable if a PDF document is actually being produced (see PDF_OPEN).

The size calculated and returned corresponds to the width of the given text if it were to be written using the
current font.

See a usage example given along with the PDF_SETFONT description.

 ST-Script Guidelines 1.38

 Page 312 of 562

Reports

Unrelated to the family of functions dedicated to generic PDF documents production, is a function meant for
the production of a whole report document.
Reports are complex aggregates of information, pre-configured in the project at design time, end produced by
the runtime in form of PDF documents.

Detailed specifications about reports concepts, behaviour, configuration and compilation can be found in:

[3] PDF Reports
 R:\WCE\Documenti\BlueOcean\RT7\SystemCore\ PDF Reports [x.x].docx
 Description of implemented PDF Reports, concepts, configurability and compilation models

REPORT_EXPORT

Create a whole report in a PDF document.

REPORT_EXPORT (REPORTID, FILENAME, UTC, SIGNATURE [, TIMEFROM [, TIMETO [, TIMESPAN [, LANGUAGE]]]])

input

REPORTID : UDINT ID of the required report
FILENAME : ANY_STRING name of the newly created PDF file
UTC : BOOL states whether the times provided (either here or in the report

configuration) and the times produced (printed in the document) have to
be interpreted and formatted in UTC (TRUE) or in server local time
(FALSE)

SIGNATURE : ANY_STRING if provided, it’s the signature entered by the user when the report
production has been requested; can be used to force a specific signature
in the dedicated report fields, if the report itself is designed to print it;
can be an empty string if not needed

TIMEFROM : DT [OPTIONAL] can be given to force a specific initial timestamp for the time-
ranges of all the report modules that support it;
if not given (along with the subsequent optional parameters)
it means the original pre-configured “from” report properties
won’t have to be overwritten;
0xFFFFFFFF = CDT(16#FFFFFFFF) can be given to explicitly state
that this TIMEFROM must not overwrite the report properties

TIMETO : DT [OPTIONAL] can be given to force a specific final timestamp for the time-
ranges of all the report modules that support it;
if not given (along with the subsequent optional parameters)
it means the original pre-configured “to” report properties
won’t have to be overwritten;
0x00000000 = CDT(0) can be given to explicitly state that this
TIMETO must not overwrite the report properties

TIMESPAN : ANY_INT [OPTIONAL] can be given to force a specific total span for the time-ranges
of all the report modules that support it;
if not given it means the original pre-configured “span” report
properties won’t have to be overwritten;
0 can be given to explicitly state that this TIMESPAN must not
overwrite the report properties

 ST-Script Guidelines 1.38

 Page 313 of 562

LANGUAGE : ANY_INT [OPTIONAL] can be given to force a specific language to be used in
multilanguage elements of the report (tables headers, text
labels…);
if not given (or explicitly given = 0) it means that the system
should use the language currently active in the machine
(either client or server) that invoked the script execution

 ST-Script Guidelines 1.38

 Page 314 of 562

REPORT_ENABLESECTION

Enables or disables single modules or whole classes of sections within report documents.

REPORT_ENABLESECTION (MODULEID, ENABLE)

input

MODULEID : ANY_INT provides the identification of the module (or modules) that has to be enabled or
disabled; allowed values are the following:
- can be 0 (zero) to state that all the modules have to be enabled or disabled at

once; beware: with this selection both the CLASS-oriented and the MODULE-
oriented selections are affected;

- can be a positive value to select the ID of the class of modules that must be
enabled or disabled (only for CLASS-oriented selections); the supported class
codes are:

1 (REPORTCLASSFDA) all FDA modules
2 (REPORTCLASSACTIVE) all ACTIVE alarms modules

3 (REPORTCLASSHISTORY) all alarms HISTORY modules

4 (REPORTCLASSSTATS) all alarms STATS modules

5 (REPORTCLASSRECIPES) all RECIPES modules

6 (REPORTCLASSDATALOG) all DATALOG modules

7 (REPORTCLASSTREND) all TREND modules

8 (REPORTCLASSCSV) all CSV modules

9 (REPORTCLASSTAGS) all TAGS list modules

10 (REPORTCLASSCUSTOM) all CUSTOM AREA modules
11 (REPORTCLASSUSERS) all FDA/USERS modules

- can be a negative value to select the index (base-1) of the report section that
must be enabled or disabled (only for MODULE-oriented selection);

 in this case -1 identifies the 1st section, -2 identifies the 2nd section, and so on
ENABLE : BOOL TRUE to enable the sections of the given class; FALSE to disable them

At startup all the sections are enabled by default.
Users are allowed to disable or enable
. all the modules at once,
. single modules (by selecting their index),
. or entire classes of modules (by selecting the classes they need).

Changes applied with this function will take effect starting from the next created report documents, and will
remain in effect until modified or revoked. Selections must be done with this in mind, since (especially in case
of multiple different reports defined in a project) there is no direct connection between the given modules IDs
and any specific report.

Note that the REPORTCLASSFDA selection will only enable/disable FDA modules meant for ALL the logged records,
while the REPORTCLASSUSERS selection is used for FDA tables marked for USERS events only.

 ST-Script Guidelines 1.38

 Page 315 of 562

< VARIABLES >

The following are the variables usable to access information about PDF document elements;

- all of the listed variables will give a proper value only while a PDF document is being produced (that is

between a PDF_OPEN and a PDF_CLOSE call); their initial value is assigned as soon as a document is created;
if no document is under construction, then only 0s will be found;

- all of the returned measures are given in 72nd of inch (fractional measures are possible as well);
- negative values mean there were issues trying to retrieve the measure.

PDF_PAGEWIDTH type LREAL
 access R

gives the width of the PDF document pages

PDF_PAGEHEIGHT type LREAL
 access R

gives the height of the PDF document pages

PDF_FONTHEIGHT type LREAL
 access R

gives the total height of the font currently selected in the PDF document
(size of texts written with the current font);
the value of this variable is updated every time a new font is selected,
every time a new font size is selected, and at the moment of the creation
of the document (when the default font is enabled); see PDF_OPEN,
PDF_SETFONT, PDF_SETFONTNAME and PDF_SETFONTSIZE

PDF_FONTASCENT type LREAL
 access R

gives the height of the 'ascent' portion of the font currently selected in the
PDF document (see metrics in the picture below);
the value of this variable is updated every time a new font is selected,
every time a new font size is selected, and at the moment of the creation
of the document (when the default font is enabled); see PDF_OPEN,
PDF_SETFONT, PDF_SETFONTNAME and PDF_SETFONTSIZE

PDF_FONTDESCENT type LREAL
 access R

gives the height of the 'descent' portion of the font currently selected in
the PDF document (see metrics in the picture below);
the value of this variable is updated every time a new font is selected,
every time a new font size is selected, and at the moment of the creation
of the document (when the default font is enabled); see PDF_OPEN,
PDF_SETFONT, PDF_SETFONTNAME and PDF_SETFONTSIZE

 ST-Script Guidelines 1.38

 Page 316 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

PDFCTXPRINT 0x0004 PDF_OPEN
PDFCTXEDIT 0x0008 PDF_OPEN
PDFCTXCOPY 0x0010 PDF_OPEN
PDFCTXEDITNOTES 0x0020 PDF_OPEN
PDFCTXFILLANDSIGN 0x0100 PDF_OPEN
PDFCTXACCESSIBLE 0x0200 PDF_OPEN
PDFCTXDOCASSEMBLY 0x0400 PDF_OPEN
PDFCTXHIGHPRINT 0x0800 PDF_OPEN
PDFCTXALL 0xFFFF PDF_OPEN

REPORTCLASSFDA 1 REPORT_ENABLESECTION
REPORTCLASSACTIVE 2 REPORT_ENABLESECTION
REPORTCLASSHISTORY 3 REPORT_ENABLESECTION
REPORTCLASSSTATS 4 REPORT_ENABLESECTION
REPORTCLASSRECIPES 5 REPORT_ENABLESECTION
REPORTCLASSDATALOG 6 REPORT_ENABLESECTION
REPORTCLASSTREND 7 REPORT_ENABLESECTION
REPORTCLASSCSV 8 REPORT_ENABLESECTION
REPORTCLASSTAGS 9 REPORT_ENABLESECTION
REPORTCLASSCUSTOM 10 REPORT_ENABLESECTION
REPORTCLASSUSERS 11 REPORT_ENABLESECTION

 ST-Script Guidelines 1.38

 Page 317 of 562

10. COMMON - EXTERNAL

EveryWare

EW_ON

Starts the EveryWare client process.

EW_ON ()

 ST-Script Guidelines 1.38

 Page 318 of 562

EW_OFF

Stops the EveryWare client process.

EW_OFF ()

 ST-Script Guidelines 1.38

 Page 319 of 562

EW_ENABLE

Enables EveryWare connection and functionalities.

EW_ENABLE ()

 ST-Script Guidelines 1.38

 Page 320 of 562

EW_DISABLE

Disables EveryWare connection and functionalities.

EW_DISABLE ()

 ST-Script Guidelines 1.38

 Page 321 of 562

EW_STATE

Retrieves the current EveryWare working state.

STATE = EW_STATE ()

output

STATE : UDINT a code giving the current EveryWare state; possible codes are:
 0 : EveryWare process doesn't exist
 1 : EveryWare is loaded, enabled and working
 2 : EveryWare is loaded, but is currently disabled
 0xFFFFFFFF : no valid state could be retrieved (can't reach the process)
 N (anything else) : EveryWare is loaded, but connection attempts ended up in

failure with this error code

 ST-Script Guidelines 1.38

 Page 322 of 562

EW_EXIST

Checks whether the EveryWare client process is currently in execution.

STATE = EW_EXIST ()

output

STATE : BOOL a code giving the current EveryWare process state; possible codes are:
 TRUE : EveryWare process is loaded
 FALSE : EveryWare process is NOT loaded

 ST-Script Guidelines 1.38

 Page 323 of 562

Messaging

MSG_EMAIL

Sends an e-mail to a list of given recipients.

MSG_EMAIL (ADDRESSES, ADDCOPY, ADDHIDDEN, REPLYTO, SUBJECT, MESSAGE, ATTACHMENTS)

input

ADDRESSES : ANY_STRING e-mail address of the recipient(s);
 in case of multiple recipients, a whole list of addresses can be given
 as a TAB-separated list of string pieces
ADDCOPY : ANY_STRING e-mail address of the recipient(s) to be set in copy;
 in case of multiple recipients, a whole list of addresses can be given
 as a TAB-separated list of string pieces;
 can be an empty string if not needed
ADDHIDDEN : ANY_STRING e-mail address of the recipient(s) to be set as hidden;
 in case of multiple recipients, a whole list of addresses can be given
 as a TAB-separated list of string pieces;
 can be an empty string if not needed
REPLYTO : ANY_STRING e-mail address to be used by recipients in Reply-To messages;
 can be an empty string if not needed
SUBJECT : ANY_STRING the subject of the e-mail;
 can be an empty string if not needed
MESSAGE : ANY_STRING the content of the e-mail;
 can be an empty string if not needed
ATTACHMENTS : ANY_STRING the file name of an attachment;
 multiple attachments can be given as a TAB-separated list of file names;
 can be an empty string if not needed

 ST-Script Guidelines 1.38

 Page 324 of 562

MSG_EMAILLIST

Sends an e-mail to all the users listed as members of a pre-configured mailing list.

MSG_EMAILLIST (MAILLIST, REPLYTO, SUBJECT, MESSAGE, ATTACHMENTS)

input

MAILLIST : ANY_STRING name of the users mailing list;
 the list gathers all the recipients addresses, along with their participation

modes, as normal/copy/hidden members
REPLYTO : ANY_STRING e-mail address to be used by recipients in Reply-To messages;
 can be an empty string if not needed
SUBJECT : ANY_STRING the subject of the e-mail;
 can be an empty string if not needed
MESSAGE : ANY_STRING the content of the e-mail;
 can be an empty string if not needed
ATTACHMENTS : ANY_STRING the file name of an attachment;
 multiple attachments can be given as a TAB-separated list of file names;
 can be an empty string if not needed

 ST-Script Guidelines 1.38

 Page 325 of 562

MSG_APPNOTIFICATION

Sends an app notification to a list of given recipients.

MSG_APPNOTIFICATION (ADDRESSES, MESSAGE)

input

ADDRESSES : ANY_STRING e-mail address of the recipient(s);
 in case of multiple recipients, a whole list of addresses can be given
 as a TAB-separated list of string pieces
MESSAGE : ANY_STRING the content of the notification message;
 can be an empty string if not needed

 ST-Script Guidelines 1.38

 Page 326 of 562

MSG_APPNOTIFICATIONLIST

Sends an app notification to all the users listed as members of a pre-configured mailing list.

MSG_APPNOTIFICATIONLIST (MAILLIST, MESSAGE)

input

MAILLIST : ANY_STRING name of the users mailing list;
 the list gathers all the recipients addresses
MESSAGE : ANY_STRING the content of the notification message;
 can be an empty string if not needed

 ST-Script Guidelines 1.38

 Page 327 of 562

MSG_SMS

Sends an SMS to a list of given recipients.

MSG_SMS (NUMBERS, MESSAGE)

input

NUMBERS : ANY_STRING telephone (mobile) number of the recipient(s);
 in case of multiple recipients, a whole list of numbers can be given
 as a TAB-separated list of string pieces
MESSAGE : ANY_STRING the content of the SMS message;
 can be an empty string if not needed

 ST-Script Guidelines 1.38

 Page 328 of 562

MSG_SMSLIST

Sends an SMS to all the users listed as members of a pre-configured mailing list.

MSG_SMSLIST (MAILLIST, MESSAGE)

input

MAILLIST : ANY_STRING name of the users mailing list;
 the list gathers all the recipients' telephone (mobile) numbers
MESSAGE : ANY_STRING the content of the SMS message;
 can be an empty string if not needed

 ST-Script Guidelines 1.38

 Page 329 of 562

11. RUNTIME - TIMERS

TIMER_START

Starts a timer counting and its ability to generate 'fire' events.

TIMER_START (TIMER)

input

TIMER : ANY_STRING the name of the timer

If the timer is already started, this instruction is ignored;
if it's currently stopped, its progress counter is reset before the start;
if it's currently suspended, its progress counter is retained, and the counting goes on from there.

 ST-Script Guidelines 1.38

 Page 330 of 562

TIMER_STOP

Stops a timer counting and its ability to generate 'fire' events.

TIMER_STOP (TIMER)

input

TIMER : ANY_STRING the name of the timer

If the timer is already stopped, this instruction is ignored;
if it's currently suspended, the state becomes 'stopped'
(suspended timers can be downgraded to stopped, but not the opposite);
if it's currently started, the timer is just stopped.

While stopped, the timer retains its progress counter value as it is; when restarted though, the counter is reset
so that a whole new period is counted.
See TIMER_START for a description of the states changes.

 ST-Script Guidelines 1.38

 Page 331 of 562

TIMER_SUSPEND

Suspends a timer counting and its ability to generate 'fire' events.

TIMER_SUSPEND (TIMER)

input

TIMER : ANY_STRING the name of the timer

If the timer is already suspended or stopped (not counting), this instruction is ignored
(only started timers can be suspended);
if it's currently started (counting), the counting is stopped and the timer state becomes suspended.

While suspended, the timer retains its progress counter value as it is; if restarted, the count goes on from
there.
See TIMER_START for a description of the states changes.

 ST-Script Guidelines 1.38

 Page 332 of 562

TIMER_SETLIMIT

Sets a new value for the timer counter limit.

TIMER_SETLIMIT (TIMER, LIMIT)

input

TIMER : ANY_STRING the name of the timer
LIMIT : ANY_ELEMENTARY the new limit value
 this parameter can actually be of the following types only:
 TIME, LTIME, DT, LDT, TOD, LTOD, ANY_UNSIGNED
 (see below for a description of supported modes and types)

Values and types of the LIMIT parameter actually depend on the type of the timer, since different timers are
designed to count different things. The timer type must be known by the programmer: it's coming from the
project configuration and can't change at runtime.

ONESHOT and NORMAL timers (the two period-based timers) need a limit that gives the duration of their period;
this limit is expected to have a resolution in 10ths of second;
it can be given here in the following forms:
- TIME : the TIME duration, natively in ms, is cut to the lower 10th of second;
- LTIME : the LTIME duration, natively in ns, is cut to the lower 10th of second;
- ANY_UNSIGNED : the given value must be a time duration expressed in 10ths of second.

ALARMSINGLE needs a limit giving the date and time of its one and only fire event (local server time);
the expected precision for the event is in seconds (precision and range of a DT are enough);
this limit can be given here in the following forms:
- DT : the DT (simple date and time) natively gives the date and time with the correct specs;
- LDT : the LDT (long date and time) is cut in precision and range to those of a DT;
- ANY_UNSIGNED : the given value must be exactly the numeric value of a corresponding DT: that means the

number of seconds elapsed since the 00:00 of 1.1.1970 (the numeric value of a standard
UNIX time).

ALARMTIME needs a limit giving the time of its daily events (local server time);
the expected precision for the event is in seconds;
this limit can be given here in the following forms:
- TOD : the TOD value, natively in ms, is cut to the lower second;
- LTOD : the LTOD value, natively in ns, is cut to the lower second;
- ANY_UNSIGNED : the given value must be a time expressed in number of seconds elapsed since the 00:00.

 ST-Script Guidelines 1.38

 Page 333 of 562

TIMER_GETLIMIT

Obtains the current value of the timer counter limit.

LIMIT = TIMER_GETLIMIT (TIMER)

input

TIMER : ANY_STRING the name of the timer

output

LIMIT : ANY_ELEMENTARY the current timer limit value
 this result can actually be of the following types only:
 LTIME, DT, TOD
 (see below for a description of supported modes and types)

Values and types of the LIMIT result actually depend on the type of the timer, since different timers are
designed to count different things. The timer type must be known by the programmer: it's coming from the
project configuration and can't change at runtime.

ONESHOT and NORMAL timers (the two period-based timers) have a limit that gives the duration of their period;
it's returned by this function as a:
- LTIME : the returned value will be multiple of the counter resolution (10ths of second).

ALARMSINGLE has a limit giving the date and time of its one and only fire event (local server time);
it's returned by this function as a:
- DT : the returned DT matches the needed specs for the limit range and resolution (seconds).

ALARMTIME has a limit giving the time of its daily events (local server time);
it's returned by this function as a:
- TOD : the returned TOD will be a multiple of the counter resolution (seconds).

 ST-Script Guidelines 1.38

 Page 334 of 562

TIMER_SETPROGRESS

Sets a new value for the timer progress counter.

TIMER_SETPROGRESS (TIMER, PROGRESS)

input

TIMER : ANY_STRING the name of the timer
PROGRESS : ANY_MAGNITUDE the new counter progress value;
 this parameter can actually be of the following types only:
 TIME, LTIME, ANY_UNSIGNED
 (see below for a description of supported types)

The PROGRESS parameter is given as the new value for the timer progress counter: the counter that states the
amount of time missing to the timer fire event.
This is essentially a time duration; its needed precision is in 10ths of second.
It can be given in the following forms:
- TIME : the given duration, natively in ms, is cut to the lower 10th of second;
- LTIME : the given duration, natively in ns, is cut to the lower 10th of second;
- ANY_UNSIGNED : the given value must be a time duration expressed in 10ths of second.

 ST-Script Guidelines 1.38

 Page 335 of 562

TIMER_GETPROGRESS

Obtains the current value of the timer progress counter.

PROGRESS = TIMER_GETPROGRESS (TIMER)

input

TIMER : ANY_STRING the name of the timer

output

PROGRESS : LTIME the current counter progress value

This is the counter that states the amount of time missing to the timer fire event.
The counter resolution is in 10ths of second.
The returned value though, multiple of these 10ths of second, is packed in an LTIME.

 ST-Script Guidelines 1.38

 Page 336 of 562

TIMER_ISSTARTED

Checks whether a timer is currently counting or not.

STATE = TIMER_ISSTARTED (TIMER)

input

TIMER : ANY_STRING the name of the timer

output

STATE : BOOL TRUE if the timer is currently started;
 FALSE if it's currently stopped or suspended

 ST-Script Guidelines 1.38

 Page 337 of 562

TIMER_ISSUSPENDED

Checks whether a timer is currently suspended or not.

STATE = TIMER_ISSUSPENDED (TIMER)

input

TIMER : ANY_STRING the name of the timer

output

STATE : BOOL TRUE if the timer is currently suspended;
 FALSE if it's currently started or stopped

 ST-Script Guidelines 1.38

 Page 338 of 562

12. RUNTIME - TAGS

TAG_GETVALUE

Retrieves the current tag value.

VALUE = TAG_GETVALUE (TAG)

input

TAG : ANY_STRING the name of the tag

output

VALUE : ANY the value of the tag;
 the type of the returned value will match the (internal) type of the given tag

This function doesn't cause any acquisition from a device: the returned value is directly taken from the current
tag cache.

 ST-Script Guidelines 1.38

 Page 339 of 562

TAG_SETVALUE

Changes the current tag value.
The value is kept within the tag, not written to the device.

TAG_SETVALUE (TAG, VALUE)

input

TAG : ANY_STRING the name of the tag
VALUE : ANY the new value for the tag;
 the type of the value should match the (internal) type of the given tag;

types conversions are actually automatically handled to a certain degree, but
coherence should be granted by the programmer (see TAG_WRITEVALUE for hints)

This function is meant to store the new value in the tag internal memory, while avoiding writing it on the
device.
When a value set in the tag has to be finalized on the device, an explicit call to a TAG_FLUSHVALUE is necessary.

 ST-Script Guidelines 1.38

 Page 340 of 562

TAG_FLUSHVALUE

Writes on device the value currently stored in a tag.

TAG_FLUSHVALUE (TAG)

input

TAG : ANY_STRING the name of the tag

This function expects the tag to already have a valid value in its internal memory, prepared by previous
acquisitions or by application assignments. Especially meant to be used after values have been assigned by
functions like TAG_SETVALUE or TAG_SETFIELDVALUE.

 ST-Script Guidelines 1.38

 Page 341 of 562

TAG_READVALUE

Reads from device the value of a tag.

VALUE = TAG_READVALUE (TAG)

input

TAG : ANY_STRING the name of the tag

output

VALUE : ANY the value of the tag;
 the type of the returned value will match the (internal) type of the given tag

The value of the tag is acquired from its device, stored in the tag memory, and then returned.

This function works synchronously and is blocking for the script (by the time the function exits, the
communication with the device is complete and the tag is already updated).

 ST-Script Guidelines 1.38

 Page 342 of 562

TAG_WRITEVALUE

Writes on device the value of a tag.

TAG_WRITEVALUE (TAG, VALUE)

input

TAG : ANY_STRING the name of the tag
VALUE : ANY the value of the tag;
 the type of the value should match the (internal) type of the given tag;

types conversions are actually automatically handled to a certain degree, but
coherence should be granted by the programmer;
for example, the system is normally able to convert any kind of plain numeric value
in case of plain numeric tag, but conversions between strings and numbers are not
supported; also particular attention must be paid in case of arrays, since the system
only allows the usage of precisely matching types

The value of the tag is stored in the tag memory, and then written on its device.

This function works synchronously and is blocking for the script (by the time the function exits, even the
communication with the device is complete).

 ST-Script Guidelines 1.38

 Page 343 of 562

TAG_READELEMENT

Reads from device the value of the element of a tag-array.

VALUE = TAG_READELEMENT (TAG, INDEX)

input

TAG : ANY_STRING the name of the tag
INDEX : ANY_INT the index (base-0) of the array element

output

VALUE : ANY the value of the tag-array element;
 the type of the returned value will match the (internal) type of the given element

The operation actually affects the whole tag: the whole array is acquired from the device and stored in the tag
memory; then the value of the single element is extracted from the tag and returned.

This function works synchronously and is blocking for the script (by the time the function exits, the
communication with the device is complete and the tag is already updated).

 ST-Script Guidelines 1.38

 Page 344 of 562

TAG_WRITEELEMENT

Writes on device the value of the element of a tag-array.

TAG_WRITEELEMENT (TAG, INDEX, VALUE)

input

TAG : ANY_STRING the name of the tag
INDEX : ANY_INT the index (base-0) of the array element
VALUE : ANY the value of the tag element;
 the type of the value should match the (internal) type of the given element

types conversions are actually automatically handled to a certain degree, but
coherence should be granted by the programmer

The operation actually affects the whole tag: the given element value is used to update the tag-array value in
memory; then the whole array value is written on the device.

This function works synchronously and is blocking for the script (by the time the function exits, even the
communication with the device is complete).

 ST-Script Guidelines 1.38

 Page 345 of 562

TAG_READBIT

Reads from device the value of the bit of a numeric tag.

VALUE = TAG_READBIT (TAG, INDEX)

input

TAG : ANY_STRING the name of the tag
INDEX : ANY_INT the index (base-0) of the bit

output

VALUE : BOOL the value of the tag bit

The operation is only supported on integer numeric tags (booleans included), and on corresponding arrays of
numeric elements. Essentially on everything that doesn't involve values of string and floating-point types.

The operation actually affects the whole tag: it is acquired as a whole from the device and stored in the tag
memory; then the value of the single bit is extracted from the tag and returned.

This function works synchronously and is blocking for the script (by the time the function exits, the
communication with the device is complete and the tag is already updated).

 ST-Script Guidelines 1.38

 Page 346 of 562

TAG_WRITEBIT

Writes on device the value of the bit of a numeric tag.

TAG_WRITEBIT (TAG, INDEX, VALUE)

input

TAG : ANY_STRING the name of the tag
INDEX : ANY_INT the index (base-0) of the bit
VALUE : BOOL the new value of the tag bit

The operation is only supported on integer numeric tags (booleans included), and on corresponding arrays of
numeric elements. Essentially on everything that doesn't involve values of string and floating-point types.

The operation actually affects the whole tag: the given bit value is used to update the tag value in memory;
then the whole tag value is written on the device.

This function works synchronously and is blocking for the script (by the time the function exits, even the
communication with the device is complete).

 ST-Script Guidelines 1.38

 Page 347 of 562

TAG_READITEM

Reads from device any addressable element.

VALUE = TAG_READITEM (DEVICE, AREA, TYPE, STRLEN, ASIZE, BCD, ADD1 [, ADD2 [, ADD3 [, … , ADD8]]])

input

DEVICE : ANY_INT the ID of the device where the tag is mapped;
this code depends on the configuration of the current project;
see TAG_GETDEVICEID for a way to retrieve the device ID of a known tag;
see TAG_DEVICESNUMBER, TAG_DEVICEGETID and TAG_DEVICEGETNAME for a way to browse the
devices existing in the project

AREA : ANY_INT the ID of the area within the given device memory;
this code depends on the implementation of the communication device in use;
see TAG_GETAREAID for a way to retrieve the device area ID of a known tag;
see TAG_AREASNUMBER, TAG_AREAGETID and TAG_AREAGETNAME for a way to browse the
memory areas supported by a given device

TYPE : ANY_INT the code of the type of the value that has to be acquired;
the supported codes (along with their symbolic constants) are:
- 16 (TAGTYPESINT) - 17 (TAGTYPEUSINT)
- 2 (TAGTYPEINT) - 18 (TAGTYPEUINT)
- 3 (TAGTYPEDINT) - 19 (TAGTYPEUDINT)
- 20 (TAGTYPELINT) - 21 (TAGTYPEULINT)
- 4 (TAGTYPEREAL) - 5 (TAGTYPELREAL)
- 11 (TAGTYPEBOOL)
- 30 (TAGTYPESTRING) - 8 (TAGTYPEWSTRING)
in case of array, the following constant must be added to the element type:
- 0x2000 (TAGARRAY)

STRLEN : ANY_INT the length of the string, if the requested item type is string;
it's ignored otherwise

ASIZE : ANY_INT the size (number of elements) of the array, if the requested item is an array;
it's ignored otherwise

BCD : BOOL TRUE if the item value is in BCD on the device; FALSE otherwise
ADD# : ANY a list of (up to) 8 parameters, giving the values of the address fields of the required

item (the address of the starting location of the item in the device memory);
the number of parameters ranges between 1 and 8;
their actual number and types depend on the device and the referenced memory area;
the programmer is expected to know the needs of the targeted memory area;
hints about it can be deduced from the tags configuration windows in Crew™

output

VALUE : ANY the value of the acquired item;
 expected to match the TYPE given as parameter

This function works synchronously and is blocking for the script (by the time the function exits, the whole
communication process with the device is complete).

A special note about "variant" accesses: in case of items that can be identified as children of predefined
structured tags, it is possible to submit special requests, where:
 - DEVICE = 0
 - AREA = 0
 - TYPE = 0
 - one only ADD# field, formatted as
 ADD1 = field identification = "TAG.path…path"

 ST-Script Guidelines 1.38

 Page 348 of 562

In this case, with most of the properties empty, the address field (formatted as a concatenation of a tag name
and a structured path leading to the targeted field) is used to identify a tag and a structured field; most of the
item properties are automatically identified by the runtime, in part inherited from the tag, in part found in the
(already known) structure definition.

 ST-Script Guidelines 1.38

 Page 349 of 562

TAG_WRITEITEM

Writes on device any addressable element.

TAG_WRITEITEM (VALUE, DEVICE, AREA, TYPE, STRLEN, ASIZE, BCD, ADD1 [, ADD2 [, ADD3 [, … , ADD8]]])

input

VALUE : ANY the value of the item;
expected to match the TYPE specified along (a certain degree of types compatibility is
allowed by the system; see TAG_WRITEVALUE for hints on the matter)

DEVICE : ANY_INT the ID of the device where the tag is mapped
AREA : ANY_INT the ID of the area within the given device memory
TYPE : ANY_INT the code of the type of the value that has to be acquired
STRLEN : ANY_INT the length of the string, if the requested item type is string
ASIZE : ANY_INT the size (number of elements) of the array, if the requested item is an array
BCD : BOOL TRUE if the item value is in BCD on the device; FALSE otherwise
ADD# : ANY a list of (up to) 8 parameters, giving the values of the address fields of the required

item (the address of the starting location of the item in the device memory)

See TAG_READITEM for deeper and detailed specifications of meanings and mechanics involved with the given
parameters.

As above (like TAG_READITEM) this function supports "variant" accesses as well: in case of items that can be
identified as children of predefined structured tags, it is possible to submit special requests, where:
 - DEVICE = 0
 - AREA = 0
 - TYPE = 0
 - one only ADD# field, formatted as
 ADD1 = field identification = "TAG.path…path"
The address field (formatted as a concatenation of a tag name and a structured path leading to the targeted
field) is used to identify a tag and one of its fields; most of the item properties are then automatically identified
by the runtime, in part inherited from the tag, in part found in the (already known) structure definition.

This function works synchronously and is blocking for the script (by the time the function exits, the whole
communication process with the device is complete).

example

VAR

 idx : UINT;

END_VAR;

// …how to write 100 items on a modbus…

FOR idx := 0 TO 99 DO

 TAG_WRITEITEM (idx, // write the progress counter

 1, // let's say the needed device is the 1
st

 of the project

 2, // regular modbus registers are on area n. 2

 TAGTYPEUINT, // same as <idx> type; matching the addressable modbus unit

 0, // not a string

 0, // not an array

 FALSE, // not BCD

 ANY_TO_UDINT(idx)); // register address, needed as UDINT

END_FOR;

 ST-Script Guidelines 1.38

 Page 350 of 562

 ST-Script Guidelines 1.38

 Page 351 of 562

TAG_GETID

Retrieves the ID of a tag of given name.

ID = TAG_GETID (TAG)

input

TAG : ANY_STRING the name of the tag

output

ID : UDINT the ID of the tag

 ST-Script Guidelines 1.38

 Page 352 of 562

TAG_GETNAME

Retrieves the name of a tag of given ID.

TAG = TAG_GETNAME (ID)

input

ID : UDINT the ID of the tag

output

TAG : WSTRING the name of the tag

 ST-Script Guidelines 1.38

 Page 353 of 562

TAG_GETSHAREDID

Retrieves the shared ID (public network ID) of a tag of given name.

SHARED = TAG_GETSHAREDID (TAG)

input

TAG : ANY_STRING the name of the tag

output

SHARED : UDINT the shared ID of the tag

 ST-Script Guidelines 1.38

 Page 354 of 562

TAG_GETIDFROMSHARED

Retrieves the ID of a tag of given shared ID.

ID = TAG_GETIDFROMSHARED (SHARED)

input

SHARED : UDINT the shared ID of the tag

output

ID : UDINT the ID of the tag

 ST-Script Guidelines 1.38

 Page 355 of 562

TAG_GETVALUETYPE

Retrieves the type code of a tag value.

TYPE = TAG_GETVALUETYPE (TAG)

input

TAG : ANY_STRING the name of the tag

output

TYPE : UINT the code of the tag value type;
the supported codes (along with their symbolic constants) are:
- 16 (TAGTYPESINT) 8 bits signed integer
- 17 (TAGTYPEUSINT) 8 bits unsigned integer
- 2 (TAGTYPEINT) 16 bits signed integer
- 18 (TAGTYPEUINT) 16 bits unsigned integer
- 3 (TAGTYPEDINT) 32 bits signed integer
- 19 (TAGTYPEUDINT) 32 bits unsigned integer
- 20 (TAGTYPELINT) 64 bits signed integer
- 21 (TAGTYPEULINT) 64 bits unsigned integer
- 4 (TAGTYPEREAL) 32 bits floating-point
- 5 (TAGTYPELREAL) 64 bits floating-point
- 11 (TAGTYPEBOOL) boolean
- 30 (TAGTYPESTRING) 8 bits chars string
- 8 (TAGTYPEWSTRING) 16 bits chars string
in case of array, the following constant is added to the element type:
- 0x2000 (TAGARRAY)

 ST-Script Guidelines 1.38

 Page 356 of 562

TAG_GETSTRLENGTH

Retrieves the length of the string value of a tag.

LENGTH = TAG_GETSTRLENGTH (TAG)

input

TAG : ANY_STRING the name of the tag

output

LENGTH : UINT the length of the string value (in case of string value type);
 0 otherwise

If the given tag has not a string type, this method returns 0; programmers should not rely on this information
to check the type of the tag value though: see TAG_GETVALUETYPE instead.

 ST-Script Guidelines 1.38

 Page 357 of 562

TAG_GETARRAYSIZE

Retrieves the size (number of elements) of a tag-array.

SIZE = TAG_GETARRAYSIZE (TAG)

input

TAG : ANY_STRING the name of the tag

output

SIZE : UINT the number of elements of the tag-array;
 0 if it's not an array

If the given tag is not an array, this method returns 0; programmers should not rely on this information to
check the type of the tag value though: see TAG_GETVALUETYPE instead.

 ST-Script Guidelines 1.38

 Page 358 of 562

TAG_GETDEVICEID

Retrieves the ID of the device where a given tag is located.

ID = TAG_GETDEVICEID (TAG)

input

TAG : ANY_STRING the name of the tag

output

ID : UINT the ID of the tag's device;
these IDs are defined as indexes (base-1) of the device within the project devices
collection;
see TAG_DEVICESNUMBER, TAG_DEVICEGETID and TAG_DEVICEGETNAME for tools usable to
browse the existing devices

In case of variable addresses, the function returns the current device ID value.

 ST-Script Guidelines 1.38

 Page 359 of 562

TAG_GETAREAID

Retrieves the ID of the device memory area where a given tag is mapped.

ID = TAG_GETAREAID (TAG)

input

TAG : ANY_STRING the name of the tag

output

ID : UINT the ID of the tag's device memory area;
these IDs are defined as indexes (base-1) of the area within the tag's device
memory areas collection;
see TAG_AREASNUMBER, TAG_AREAGETID and TAG_AREAGETNAME for tools usable to
browse the existing areas

In case of variable addresses, the function returns the current area ID value.

 ST-Script Guidelines 1.38

 Page 360 of 562

TAG_GETADDRESS

Retrieves the value of an address field of a given tag.

ADDRESS = TAG_GETADDRESS (TAG, INDEX)

input

TAG : ANY_STRING the name of the tag
INDEX : ANY_INT the index of the needed address field;

being the address of a tag defined by a number of fields (number and types
depending on the tag's device and memory area), this parameter gives the
index (base-0) of the field within the whole address fields sequence;
the range of allowed indexes (the composition of the complete address) is
expected to be known by the programmer

output

ADDRESS : ANY the value of the required address field

In case of variable addresses, the function returns the current address field value.

 ST-Script Guidelines 1.38

 Page 361 of 562

TAG_GETFIELDOFFSET

Retrieves the offset of a structure field within a given structured tag.

OFFSET = TAG_GETFIELDOFFSET (TAG, PATH)

input

TAG : ANY_STRING the name of the tag
PATH : ANY_STRING the path that identifies the structure field;

must correspond to the layout of the given tag structured type;
must start with either a '[' (in case the tag is an array and a specific element
has to be accessed) or a '.' (a dot, for plain field access); in principle, the exact
concatenation of TAG and PATH must give a complete structured identification
of the field

output

OFFSET : UDINT the offset, in bytes, of the beginning of the field value within the complete
structured value of the tag

The method is designed to work with internal structured tags as well as with any structured tag with numeric
address, provided they have been precisely defined in the declaration of their type (among the information
compiled for the server runtime).
In case of tags with symbolic address, the fields addresses are given by plain concatenations of the involved
symbolic strings, and are not taken into account by this function.

 ST-Script Guidelines 1.38

 Page 362 of 562

TAG_GETFIELDADDRESS

Retrieves the address of a structure field of a given structured tag.

ADDRESS = TAG_GETFIELDADDRESS (TAG, PATH)

input

TAG : ANY_STRING the name of the tag
PATH : ANY_STRING the path that identifies the structure field;

must correspond to the layout of the given tag structured type;
must start with either a '[' (in case the tag is an array and a specific element
has to be accessed) or a '.' (a dot, for plain field access); in principle, the exact
concatenation of TAG and PATH must give a complete structured identification
of the field

output

ADDRESS : UDINT the address of the targeted structure field, calculated adding its internal offset
to the base address of the tag

The method is designed to work with internal structured tags as well as with any structured tag with numeric
"byte" address, provided they have been precisely defined in the declaration of their type (among the
information compiled for the server runtime).
In case of tags with symbolic address, the fields addresses are given by plain concatenations of the involved
symbolic strings, and are not taken into account by this function.

Note the "byte" in the statement above: the result is calculated adding a number of bytes to a base address, so
a "byte addressing" is the intended model for the given tag.
A second limitation: in case of addresses made by multiple fields, the offset is added to the value of the last
address field of the base tag address, and only that address field result is returned.
In other words: this function works well with internal tags (mainly the tags for which it has been designed) and
in general with tags
- with byte numeric addressing and
- with one only address field, or tags for which it's safe to assume that the offset component can be added to
the last address field.

In cases where the limitations above are not met, this function should be avoided, and a combination of
TAG_GETADDRESS and TAG_GETFIELDOFFSET along with appropriate calculations should be used instead.

 ST-Script Guidelines 1.38

 Page 363 of 562

TAG_GETFIELDVALUE

Retrieves the value of a single structure field within a given structured tag.

VALUE = TAG_GETFIELDVALUE (TAG, PATH)

input

TAG : ANY_STRING the name of the 'parent' structured tag
PATH : ANY_STRING the path that identifies the field;

must correspond to the layout of the given tag structured type;
must start with either a '[' (in case the tag is an array and a specific element
has to be accessed) or a '.' (a dot, for plain field access); in principle, the exact
concatenation of TAG and PATH must give a complete structured identification
of the field

output

VALUE : ANY the value of the field;
 the type of the returned value will match the type of the given field, as

defined in the involved structure

The function expects the given structure tag to already have a value, either acquired from the field, or assigned
by some application logic. The returned field value is not acquired from the field device: it is instead simply
extracted from the value already owned by its parent structured tag.

 ST-Script Guidelines 1.38

 Page 364 of 562

TAG_SETFIELDVALUE

Changes the value of a single structure field within a given structured tag.

TAG_SETFIELDVALUE (TAG, PATH, VALUE)

input

TAG : ANY_STRING the name of the 'parent' structured tag
PATH : ANY_STRING the path that identifies the field;

must correspond to the layout of the given tag structured type;
must start with either a '[' (in case the tag is an array and a specific element
has to be accessed) or a '.' (a dot, for plain field access); in principle, the exact
concatenation of TAG and PATH must give a complete structured identification
of the field

VALUE : ANY the value of the field;
 the type of the returned value MUST match the type of the given field, as

defined in the involved structure

The function expects the given structure tag to already have a value, either acquired from the field, or assigned
by some application logic. The function will simply change a part of the whole value.
Note that the given value is retained in the tag internal memory, but not written to the device; when a value
set in the tag has to be finalized on the device, an explicit call to a TAG_FLUSHVALUE is necessary.

 ST-Script Guidelines 1.38

 Page 365 of 562

TAG_ASSIGNSTRUCT

Assign to all the fields of an ST (user-defined) structured value, the values coming from a matching structured
tag.

VALUE = TAG_ASSIGNSTRUCT (TAG, TYPE)

input

TAG : ANY_STRING the name of the source structured tag
TYPE : ANY_STRING the name of an ST user-defined structure type;
 only structures and arrays of structures are acceptable types

output

VALUE : ANY output value;
 this value, built as function return, assumes the exact type of the structure (or

array of structures) identified by the name given in the TYPE

The function is meant to assign fields values, from a structure to another, in cases where the structures are not
perfectly identical.
The source (input TAG) is a structured tag, the destination (output VALUE) is an ST value of a structured type.

Assignment rules:
- assignments are done field by field;
- fields match is done by name;
- fields that exist in the source but not in the destination, are ignored;
- fields that exist in the destination but not in the source, are explicitly reset;
- fields types should match; perfection is not required, but checks are strict:
 . integers can only be assigned to integers (or pseudo-integers) of the same size
 (pseudo-integers definition includes integers, ranges, enumeratives, bitstrings, booleans, date/time),
 . reals can only be assigned to reals of the same size,
 . strings can only be assigned to strings of the same size and type,
 . arrays can only be assigned to arrays of the same size and with elements following the rules above,
 . sub-structures and arrays of sub-structures are handled recursively.

 ST-Script Guidelines 1.38

 Page 366 of 562

TAG_GETNUMBERALL

Counts the total number of tags.

NUMBER = TAG_GETNUMBERALL ()

output

NUMBER : UDINT the total number of tags

The function counts all the tags configured in the current project;
the count includes:
- all external, internal and system tags,
- all indirect indexed and variable tags,
- all recipe buffer tags (actually falling under the 'internal' category),
- all sub-tags implicitly created by the compiler to support direct arrays elements access.

 ST-Script Guidelines 1.38

 Page 367 of 562

TAG_GETNUMBEREXT

Counts the number of external tags (tags mapped on external devices).

NUMBER = TAG_GETNUMBEREXT ()

output

NUMBER : UDINT the number of external tags

The function counts all the external tags configured in the current project;
the count includes:
- all external tags (excludes internal and system tags),
- all indirect variable tags (excludes indexed tags),
- all sub-tags created by the compiler to access elements of external tags (excludes sub-tags for internal tags).

 ST-Script Guidelines 1.38

 Page 368 of 562

TAG_GETCLIENTTAGNAME

Retrieves the name of a specific client system tag.
Meant to be used in scripts invoked by client requests.

TAGNAME = TAG_GETCLIENTTAGNAME (TAGCODE)

input

TAGCODE : ANY_INT a code that identifies the needed client variable;
the given code can identify one of the client system tags managed by server
drivers buffers; supported codes are:
0 (TAGSYSUILASTALARM): the specialization of "SYS_UILastAlarm"
1 (TAGSYSUIMAINALARM): the specialization of "SYS_UIAlarmMainMessage"
2 (TAGSYSUILANGUAGENAME): the specialization of "SYS_UILanguageName"
3 (TAGSYSUILANGUAGEID): the specialization of "SYS_UILanguageId"
4 (TAGSYSUIKEYSBUFFER): the specialization of "SYS_UIKeysBuffer"

output

TAGNAME : WSTRING the name of the identified tag compiled for the calling client

The function is supposed to be used within scripts invoked by clients requests.

If the script execution originated from a server event, or if the specified tag doesn't exist in the current project,
then the function will return an empty string.
If instead the script execution originated from a client request and the specified tag actually exists, then the
function will return the correct tag name for the calling client.

 ST-Script Guidelines 1.38

 Page 369 of 562

TAG_ISOFFLINE

Checks whether a tag is currently online or offline.

STATE = TAG_ISOFFLINE (TAG)

input

TAG : ANY_STRING the name of the tag

output

STATE : BOOL TRUE if the tag is offline;
 FALSE if it's online

Tags are offline if the last operation involving a read/write of their value from/to the device went wrong.
When this happens their offline state is set, and their value is invalidated.

 ST-Script Guidelines 1.38

 Page 370 of 562

TAG_ISOFFSCAN

Checks whether a tag is currently onscan or offscan.

STATE = TAG_ISOFFSCAN (TAG)

input

TAG : ANY_STRING the name of the tag

output

STATE : BOOL TRUE if the tag is offscan;
 FALSE if it's onscan

Tags can be offscan as a result of a TAG_SETOFFSCAN or TAG_SETOFFSCANDEV request, or because of an initial project
configuration.
Offscan tags inhibit the link between their value and the device where they are mapped.
When a value is written in an offscan tag, it is stored in the tag's memory, but not sent to the device; when a
value is read from an offscan tag, the value is not acquired from the device, but taken directly from the tag's
memory.

 ST-Script Guidelines 1.38

 Page 371 of 562

TAG_SETOFFSCAN

Changes the offscan state of a tag.

TAG_SETOFFSCAN (TAG, STATE)

input

TAG : ANY_STRING the name of the tag
STATE : BOOL the new offscan state

 ST-Script Guidelines 1.38

 Page 372 of 562

TAG_SETOFFSCANDEV

Changes the offscan state of a whole device.

TAG_SETOFFSCANDEV (DEVICE, STATE)

input

DEVICE : ANY_STRING the name of the device
STATE : BOOL the new device offscan state

The function expects as parameter the name of the involved device.
As tools to handle the devices names, it is always possible to use:
- TAG_GETDEVICEID to retrieve the ID of the device of a tag,
- TAG_DEVICEGETNAME to get the name of a device of known ID,
- TAG_GETDEVICESNUMBER to retrieve the range of all the possible devices IDs in the project.

 ST-Script Guidelines 1.38

 Page 373 of 562

TAG_DEVICESNUMBER

Retrieves the number of devices configured in the current project.

NUMBER = TAG_DEVICESNUMBER ()

output

NUMBER : UINT the number of configured devices

With this function, in combination with the devices' id/name conversion functions (TAG_DEVICEGETID and
TAG_DEVICEGETNAME), programmers are able to browse all the configured devices.

example

VAR

 idx : UINT;

 ndev : UINT;

 chk : UINT;

 dname : WSTRING [128];

END_VAR;

ndev := TAG_DEVICESNUMBER ();

FOR idx := 1 TO ndev DO

 dname := TAG_DEVICEGETNAME (idx); // get the name of the idx-th device

 chk := TAG_DEVICEGETID (dname); // convert back: <chk> must match the original <idx>

 // do whatever needed with the obtained info

END_FOR;

 ST-Script Guidelines 1.38

 Page 374 of 562

TAG_DEVICEGETID

Retrieves the ID of a device of known name.

ID = TAG_DEVICEGETID (DEVICE)

input

DEVICE : ANY_STRING the name of the device

output

ID : UINT the ID of the device;
these IDs are defined as indexes (base-1) of the device within the project
devices collection

See TAG_DEVICESNUMBER for a usage example.

 ST-Script Guidelines 1.38

 Page 375 of 562

TAG_DEVICEGETNAME

Retrieves the name of a device of known ID.

DEVICE = TAG_DEVICEGETNAME (ID)

input

ID : UINT the ID of the device;
these IDs are defined as indexes (base-1) of the device within the project
devices collection

output

DEVICE : WSTRING the name of the device

See TAG_DEVICESNUMBER for a usage example.

 ST-Script Guidelines 1.38

 Page 376 of 562

TAG_AREASNUMBER

Retrieves the number of memory areas available in a given device.

NUMBER = TAG_AREASNUMBER (DEVID)

input

DEVID : UINT the ID of the interested device

input

NUMBER : UINT the number of memory areas available in the given device

With this function, in combination with the areas' id/name conversion functions (TAG_AREAGETID and
TAG_AREAGETNAME), programmers are able to browse all the possible memory areas.

example

VAR

 idx : UINT;

 nar : UINT;

 chk : UINT;

 aname : WSTRING [128];

 devid : UINT;

END_VAR;

devid := 1; // scan the areas of the 1
st

 device

nar := TAG_AREASNUMBER (devid);

FOR idx := 1 TO nar DO

 aname := TAG_AREAGETNAME (devid, idx); // get the name of the idx-th area

 chk := TAG_AREAGETID (devid, aname); // convert back: <chk> must match the original <idx>

 // do whatever needed with the obtained info

END_FOR;

 ST-Script Guidelines 1.38

 Page 377 of 562

TAG_AREAGETID

Retrieves the ID of a device memory area of known name.

ID = TAG_AREAGETID (DEVID, AREA)

input

DEVID : UINT ID of the interested device
AREA : ANY_STRING the name of the device memory area

output

ID : UINT the ID of the memory area;
these IDs are defined as indexes (base-1) of the area within the tag's device
memory areas collection

See TAG_AREASNUMBER for a usage example.

 ST-Script Guidelines 1.38

 Page 378 of 562

TAG_AREAGETNAME

Retrieves the name of a device memory area of known ID.

AREA = TAG_AREAGETNAME (DEVID, ID)

input

DEVID : UINT the ID of the interested device
ID : UINT the ID of the device memory area;

these IDs are defined as indexes (base-1) of the area within the tag's device
memory areas collection

output

AREA : WSTRING the name of the memory area

See TAG_AREASNUMBER for a usage example.

 ST-Script Guidelines 1.38

 Page 379 of 562

TAG_FLUSH

Flushes on persistent storage the values of all the persistent tags.

TAG_FLUSH ()

The operation affects both internal and external persistent tags (tags whose values have to be recovered and
reapplied even after a system shutdown).

 ST-Script Guidelines 1.38

 Page 380 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

TAGTYPESINT 16 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEUSINT 17 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEINT 2 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEUINT 18 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEDINT 3 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEUDINT 19 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPELINT 20 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEULINT 21 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEREAL 4 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPELREAL 5 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEBOOL 11 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPESTRING 30 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGTYPEWSTRING 8 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE
TAGARRAY 0x2000 TAG_READITEM, TAG_WRITEITEM, TAG_GETVALUETYPE

TAGSYSUILASTALARM 0 TAG_GETCLIENTTAGNAME
TAGSYSUIMAINALARM 1 TAG_GETCLIENTTAGNAME
TAGSYSUILANGUAGENAME 2 TAG_GETCLIENTTAGNAME
TAGSYSUILANGUAGEID 3 TAG_GETCLIENTTAGNAME
TAGSYSUIKEYSBUFFER 4 TAG_GETCLIENTTAGNAME

 ST-Script Guidelines 1.38

 Page 381 of 562

13. RUNTIME - ALARMS

ALARM_ON

Raises an alarm condition.

INSTANCE = ALARM_ON (ALARM [, USER, STATION])

input

ALARM : ANY_STRING name of the alarm
USER : ANY_STRING [OPTIONAL] name of the responsible user;

if missing, automatically assumed to be the user currently logged in
at server level

STATION : ANY_STRING [OPTIONAL] name of the alarm source machine;
if missing, automatically assumed to be the server machine

output

INSTANCE : UDINT ID of the created alarm instance

USER and STATION can't be given individually: the two optional parameters must be both specified, or both
omitted.

The INSTANCE ID can be later used in calls to ALARM_ACKSINGLE.

 ST-Script Guidelines 1.38

 Page 382 of 562

ALARM_OFF

Clears an alarm condition.

ALARM_OFF (ALARM [, USER, STATION])

input

ALARM : ANY_STRING name of the alarm
USER : ANY_STRING [OPTIONAL] name of the responsible user;

if missing, automatically assumed to be the user currently logged in
at server level

STATION : ANY_STRING [OPTIONAL] name of the alarm source machine;
if missing, automatically assumed to be the server machine

USER and STATION can't be given individually: the two optional parameters must be both specified, or both
omitted.

 ST-Script Guidelines 1.38

 Page 383 of 562

ALARM_ACKSINGLE

Acknowledges a single instance of an active alarm.

ALARM_ACKSINGLE (INSTANCE [, USER, STATION])

input

INSTANCE : ANY_INT ID of the alarm instance
USER : ANY_STRING [OPTIONAL] name of the responsible user;

if missing, automatically assumed to be the user currently logged in
at server level

STATION : ANY_STRING [OPTIONAL] name of the alarm source machine;
if missing, automatically assumed to be the server machine

USER and STATION can't be given individually: the two optional parameters must be both specified, or both
omitted.

The INSTANCE ID is coming from previous calls to ALARM_ON, or queries like ALARM_GETINSTANCEID.
It could also come from embedded events parameters passed directly by the runtime, in case of scripts
associated to OnAlarmOn events.

 ST-Script Guidelines 1.38

 Page 384 of 562

ALARM_ACKINSTANCES

Acknowledges all the active instances of a given alarm.

ALARM_ACKINSTANCES (ALARM [, USER, STATION])

input

ALARM : ANY_STRING name of the alarm
USER : ANY_STRING [OPTIONAL] name of the responsible user;

if missing, automatically assumed to be the user currently logged in
at server level

STATION : ANY_STRING [OPTIONAL] name of the alarm source machine;
if missing, automatically assumed to be the server machine

USER and STATION can't be given individually: the two optional parameters must be both specified, or both
omitted.

 ST-Script Guidelines 1.38

 Page 385 of 562

ALARM_ACKGROUP

Acknowledges all the active instances of all the alarms that are part of a given group.

ALARM_ACKGROUP (GROUP [, USER, STATION])

input

GROUP : ANY_STRING name of the alarms group
USER : ANY_STRING [OPTIONAL] name of the responsible user;

if missing, automatically assumed to be the user currently logged in
at server level

STATION : ANY_STRING [OPTIONAL] name of the alarm source machine;
if missing, automatically assumed to be the server machine

USER and STATION can't be given individually: the two optional parameters must be both specified, or both
omitted.

 ST-Script Guidelines 1.38

 Page 386 of 562

ALARM_ACKALL

Acknowledge all the active alarm instances.

ALARM_ACKALL ([USER, STATION])

input

USER : ANY_STRING [OPTIONAL] name of the responsible user;
if missing, automatically assumed to be the user currently logged in
at server level

STATION : ANY_STRING [OPTIONAL] name of the alarm source machine;
if missing, automatically assumed to be the server machine

USER and STATION can't be given individually: the two optional parameters must be both specified, or both
omitted.

 ST-Script Guidelines 1.38

 Page 387 of 562

ALARM_ISON

Checks whether a given alarm condition is currently raised (if an active instance exists for the given alarm).

STATE = ALARM_ISON (ALARM)

input

ALARM : ANY_STRING name of the alarm

output

STATE : BOOL TRUE if the alarm is active (an instance exists);
 FALSE otherwise

 ST-Script Guidelines 1.38

 Page 388 of 562

ALARM_HISTORYRESET

Removes all the logged records from the alarms history.

ALARM_HISTORYRESET ()

 ST-Script Guidelines 1.38

 Page 389 of 562

ALARM_HISTORYFLUSH

Flushes on persistent storage all the history records still cached in memory buffers.

ALARM_HISTORYFLUSH ()

 ST-Script Guidelines 1.38

 Page 390 of 562

ALARM_STATSRESET

Resets all the alarms statistical information.

ALARM_STATSRESET ()

 ST-Script Guidelines 1.38

 Page 391 of 562

ALARM_STATSFLUSH

Flushes on persistent storage all the statistical information records still cached in memory buffers.

ALARM_STATSFLUSH ()

 ST-Script Guidelines 1.38

 Page 392 of 562

ALARM_EXPORT

Exports in a CSV file the records describing all the current active alarm instances.

NUMREC = ALARM_EXPORT (FILE)

input

FILE : ANY_STRING name of the exported file

output

NUMREC : UDINT number of exported records

 ST-Script Guidelines 1.38

 Page 393 of 562

ALARM_EXPORTHISTORY

Exports in a CSV file the records describing all the alarms currently logged in history.

NUMREC = ALARM_EXPORTHISTORY (FILE [, FROM [, TO]])

input

FILE : ANY_STRING name of the exported file
FROM : LDT [OPTIONAL] in case of limited time range, the initial timestamp of the needed

interval; if given, only the records with times from this parameter
onward will be included in the export

TO : LDT [OPTIONAL] in case of limited time range, the final timestamp of the needed
interval; if given, only the records with times up to this parameter
will be included in the export

output

NUMREC : UDINT number of exported records

 ST-Script Guidelines 1.38

 Page 394 of 562

ALARM_EXPORTSTATS

Exports in a CSV file the records containing the statistical information of all the project alarms.

NUMREC = ALARM_EXPORTSTATS (FILE)

input

FILE : ANY_STRING name of the exported file

output

NUMREC : UDINT number of exported records

 ST-Script Guidelines 1.38

 Page 395 of 562

ALARM_EXPORTCONFIG

Allows the customization of the list of fields included in exports.
Can affect active alarms, history and statistics exports.

ALARM_EXPORTCONFIG (KEYSACTIVE, KEYSHISTORY, KEYSSTATS)

input

KEYSACTIVE : ANY_STRING a string of keys, used to specify the list of fields (along with their order and
format) for the active alarms exports

KEYSHISTORY : ANY_STRING a string of keys, used to specify the list of fields (along with their order and
format) of the history records exports

KEYSSTATS : ANY_STRING a string of keys, used to specify the list of fields (along with their order and
format) of alarms statistics exports

The function can be used to customize all three alarm contexts altogether, or even just one of them.
Simply giving an empty string in one of the parameters means that context must not be affected.

The supported fields and their corresponding keys are as follows.

KEYSACTIVE

name N name of the alarm

priority P priority of the alarm

group G name of the alarm’s group

alarm type A | a type of the alarm;
 if the given key is an upper case ‘A’, then the output is formatted as a numeric value;
 the possible values are:
 1 : for instances of simple events,
 2 : for instances of ISA alarms;
 if the given key is a lower case ‘a’ instead, then the output is formatted as a readable

string, that can be either:
 “Event” for instances of simple events,
 “ISA” for instances of ISA alarms

description C description message of the alarm instance;
 the produced string will be translated and will contain the values of the tags possibly

included within the message configuration

quality Q | q quality flag of the alarm instance;
 the quality refers to the validity of the tags than might be embedded in the message;
 if the given key is an upper case ‘Q’, then the output is formatted as a numeric value;
 the possible values are:
 0 : the tags values are not valid,
 1 : the tags values are valid;
 if the given key is a lower case ‘q’ instead, then the output is formatted as a readable

string, that can be either:
 “Ok” for valid tags values,
 “InvalidTags” for invalid tags values

on date D date of the alarm instance ON event

on time T time of the alarm instance ON event

on type E | V type of the alarm instance ON event;

 ST-Script Guidelines 1.38

 Page 396 of 562

 exists to match the set of information dedicated to the 2nd event (see below), but
actually the only possible value for this field is “on”;

 if the given key is an ‘E’, then the output is formatted as a numeric value;
 the only possible value is:
 0 : ON event;
 if the given key is a ‘V’ instead, then the output is formatted as a readable string, that

can only be:
 “On”

on user O name of the user logged (usually but not necessarily on the server) when the alarm
instance ON event was raised

on station S name of the machine (usually but not necessarily the server machine) that detected the
alarm instance ON event

2nd date d date of the alarm instance secondary event

2nd time t time of the alarm instance secondary event

2nd type e | v type of the alarm instance secondary event;
 if existing, the information could be either “off” or “ack”;
 if the given key is an ‘e’, then the output is formatted as a numeric value;
 the possible values are:
 1 : OFF event,
 2 : ACK event;
 if the given key is a ‘v’ instead, then the output is formatted as a readable string, that

can be either:
 “Off”,
 “Ack”

2nd user o name of the user logged when the alarm instance secondary event was detected (see
above)

2nd station s name of the machine that detected the alarm instance secondary event (see above)

As a special case, it is possible to give a string that starts with a “@”, followed by few extra characters;
these characters can be given to change the behaviour and format of specific properties, only if already
included in the currently configured keys (this is to be noted: the intent is to change behaviour of existing
fields, not to add or remove fields; if the sequence of fields is to be changed, then regular keys strings are
required).
The allowed extra characters are:
- “A” : the type of the alarm will become an upper case “A” and will be written as a numeric value;
- “a” : the type of the alarm will become a lower case “a” and will be written as a readable string;
- “Q” : the quality of the alarm tags will become an upper case “Q” and will be written as a numeric value;
- “q” : the quality of the alarm tags will become a lower case “q” and will be written as a readable string;
- “E” : the type of the ON event will become an “E” and will be written as a numeric value;
- “V” : the type of the ON event will become a “V” and will be written as a readable string;
- “e” : the type of the secondary event will become an “e” and will be written as a numeric value;
- “v” : the type of the secondary event will become a “v” and will be written as a readable string.

For example, if the current keys string is: “NPGACQDTEO”
and the following customization string is given: “@aqVv”
then the keys string becomes: “NPGaCqDTVO”
(where three fields have been changed, and one ignored because not part of the original keys).

KEYSHISTORY

name N name of the alarm

priority P priority of the alarm

group G name of the alarm’s group

alarm type A | a type of the alarm;

 ST-Script Guidelines 1.38

 Page 397 of 562

 if the given key is an upper case ‘A’, then the output is formatted as a numeric value;
 the possible values are:
 1 : for instances of simple events,
 2 : for instances of ISA alarms;
 if the given key is a lower case ‘a’ instead, then the output is formatted as a readable

string, that can be either:
 “Event” for instances of simple events,
 “ISA” for instances of ISA alarms

description C description message of the alarm record;
 the produced string will be translated and will contain the values of the tags possibly

included within the message configuration

quality Q | q quality flag of the alarm record;
 the quality refers to the validity of the tags than might be embedded in the message;
 if the given key is an upper case ‘Q’, then the output is formatted as a numeric value;
 the possible values are:
 0 : the tags values are not valid,
 1 : the tags values are valid;
 if the given key is a lower case ‘q’ instead, then the output is formatted as a readable

string, that can be either:
 “Ok” for valid tags values,
 “InvalidTags” for invalid tags values

on date D date of the alarm event record

on time T time of the alarm event record

on type E | e type of the alarm event;
 if the given key is an ‘E’, then the output is formatted as a numeric value;
 the possible values are:
 0 : ON event;
 1 : OFF event;
 2 : ACK event;
 if the given key is an ‘e’ instead, then the output is formatted as a readable string, that

can be:
 “On”
 “Off”
 “Ack”

on user O name of the user logged (usually but not necessarily on the server) when the alarm
instance ON event was raised

on station S name of the machine (usually but not necessarily the server machine) that detected the
alarm instance ON event

As above, as a special case, it is possible to give a string that starts with a “@”, followed by few extra
characters;
these characters can be given to change the behaviour and format of specific fields, only if already included in
the currently configured keys (this is to be noted: the intent is to change behaviour of existing fields, not to add
or remove fields; if the sequence of fields is to be changed, then regular keys strings are required).
The allowed extra characters are:
- “A” : the type of the alarm will become an upper case “A” and will be written as a numeric value;
- “a” : the type of the alarm will become a lower case “a” and will be written as a readable string;
- “Q” : the quality of the alarm tags will become an upper case “Q” and will be written as a numeric value;
- “q” : the quality of the alarm tags will become a lower case “q” and will be written as a readable string;
- “E” : the type of the event will become an “E” and will be written as a numeric value;
- “e” : the type of the event will become an “e” and will be written as a readable string.

For example, if the current keys string is: “NPGACDTEQOS”
and the following customization string is given: “@ae”
then the keys string becomes: “NPGaCDTeQOS”.

 ST-Script Guidelines 1.38

 Page 398 of 562

KEYSSTATS

name N name of the alarm

priority P priority of the alarm

group G name of the alarm’s group

description C description message of the alarm record;
 the produced string will be translated and will contain the values of the tags possibly

included within the message configuration

state E | e current state of the alarm;
 if the given key is an upper case ‘E’, then the output is formatted as a numeric value;
 the possible values are:
 0 : OFF;
 1 : ON;
 if the given key is a lower case ‘e’ instead, then the output is formatted as a readable

string, that can be:
 “Off”
 “On”

on number B number of times the alarm ON event occurred

on duration R | r how long the alarm remained in an ON state;
 if the given key is an upper case ‘R’, then the output is formatted as a numeric value;
 the value is given in milliseconds;
 if the given key is a lower case ‘r’ instead, then the output is formatted as a readable

string, with the format “H:MM:SS.mmm” (hours:minutes:seconds.milliseconds)

As above, as a special case, it is possible to give a string that starts with a “@”, followed by few extra
characters;
these characters can be given to change the behaviour and format of specific fields, only if already included in
the currently configured keys (this is to be noted: the intent is to change behaviour of existing fields, not to add
or remove fields; if the sequence of fields is to be changed, then regular keys strings are required).
The allowed extra characters are:
- “E” : the state of the alarm will become an upper case “E” and will be written as a numeric value;
- “e” : the state of the alarm will become a lower case “e” and will be written as a readable string.
- “R” : the duration of the ON state will become an upper case “R” and will be written as a numeric value;
- “r” : the duration of the ON state will become a lower case “r” and will be written as a readable string.

For example, if the current keys string is: “NPGeBr”
and the following customization string is given: “@ER”
then the keys string becomes: “NPGEBR”.

 ST-Script Guidelines 1.38

 Page 399 of 562

ALARM_PRINT

Prints the records describing all the current active alarm instances.

NUMREC = ALARM_PRINT ()

output

NUMREC : UDINT number of printed records

 ST-Script Guidelines 1.38

 Page 400 of 562

ALARM_PRINTHISTORY

Prints the records describing all the alarms currently logged in history.

NUMREC = ALARM_PRINTHISTORY ()

output

NUMREC : UDINT number of exported records

 ST-Script Guidelines 1.38

 Page 401 of 562

ALARM_PRINTSTATS

Prints the records containing the statistical information of all the project alarms.

NUMREC = ALARM_PRINTSTATS ()

output

NUMREC : UDINT number of exported records

 ST-Script Guidelines 1.38

 Page 402 of 562

ALARM_GETNUMBER

Retrieves the total number of existing active alarm instances.

NUMBER = ALARM_GETNUMBER ([PRIORITY])

input

PRIORITY : ANY_INT [OPTIONAL] minimum priority of alarms to be considered;
 if missing, there is no priority limit: all the alarms can be counted

output

NUMBER : UDINT number of alarms counted
 (number of active instances of alarms with at least the given priority)

 ST-Script Guidelines 1.38

 Page 403 of 562

ALARM_GETNUMISA

Retrieves the number of active instances of ISA alarms.

NUMBER = ALARM_GETNUMISA ([PRIORITY])

input

PRIORITY : ANY_INT [OPTIONAL] minimum priority of alarms to be considered;
 if missing, there is no priority limit: all the alarms can be counted

output

NUMBER : UDINT number of alarms counted
 (number of active instances of ISA alarms with at least the given priority)

 ST-Script Guidelines 1.38

 Page 404 of 562

ALARM_GETNUMEVENTS

Retrieves the number of active instances of simple alarm events.

NUMBER = ALARM_GETNUMEVENTS ([PRIORITY])

input

PRIORITY : ANY_INT [OPTIONAL] minimum priority of alarms to be considered;
 if missing, there is no priority limit: all the alarms can be counted

output

NUMBER : UDINT number of alarms counted
 (number of active instances of simple events with at least the given priority)

 ST-Script Guidelines 1.38

 Page 405 of 562

ALARM_GETNUMACK

Retrieves the number of active ISA alarm instances still waiting for an acknowledge.

NUMBER = ALARM_GETNUMACK ([PRIORITY])

input

PRIORITY : ANY_INT [OPTIONAL] minimum priority of alarms to be considered;
 if missing, there is no priority limit: all the alarms can be counted

output

NUMBER : UDINT number of alarms counted
 (number of active ISA alarm instances waiting for acknowledge)

 ST-Script Guidelines 1.38

 Page 406 of 562

ALARM_GETNUMHISTORY

Retrieves the number of records logged in the alarms history.

NUMBER = ALARM_GETNUMHISTORY ()

output

NUMBER : UDINT number of history records counted

 ST-Script Guidelines 1.38

 Page 407 of 562

ALARM_GETNUMINSTANCES

Retrieves the number of active instances existing for a given alarm.

NUMBER = ALARM_GETNUMINSTANCES (ALARM)

input

ALARM : ANY_STRING name of the alarm

output

NUMBER : UDINT number of counted instances

 ST-Script Guidelines 1.38

 Page 408 of 562

ALARM_GETINSTANCEID

Retrieves the ID of one of the active instances associated to a given alarm.

ID = ALARM_GETINSTANCEID (ALARM, INDEX)

input

ALARM : ANY_STRING name of the alarm
INDEX : ANY_INT index (base-0) of the alarm instance;
 the index can range between 0 and ALARM_GETNUMINSTANCES (-1)

output

ID : UDINT the ID of the active alarm instance

Together with the ALARM_GETNUMINSTANCES, this function is able to retrieve the IDs of all the instances currently
existing for any given alarm.

 ST-Script Guidelines 1.38

 Page 409 of 562

ALARM_GETINFO

Retrieves a set of identification values for an alarm with a given name or ID.

ALARM_GETINFO ([NAME] | [ID])

input

NAME : ANY_STRING [OPTIONAL] name of the alarm;
 can and must be given if and only if the ID is missing
ID : ANY_INT [OPTIONAL] ID of the alarm;
 can and must be given if and only if the NAME is missing

The function must be called with a single parameter, either a string or a numeric one.
If the function is invoked with a string parameter, then the system assumes that the alarm is identified by its
name; if the function is invoked with a numeric parameter, then the system assumes that the alarm is
identified by its system ID.

The function doesn’t directly return any information; a set of system variables is prepared instead, dedicated to
a bunch of parameters related to the alarm configuration.
The interested variables are:

ALARM_NAME the name of the alarm;
 might replicate the NAME parameter, if passed to the function;
ALARM_ID the ID of the alarm;
 might replicate the ID parameter, if passed to the function;
ALARM_KEY the custom key of the alarm;
ALARM_MESSAGE the description message of the alarm, translated for the appropriate language;

if the execution of the script was invoked by a client, then the language currently
active in that client is used; if the execution of the script is instead triggered by a
server event, then the server language is used; use LANGUAGESET and LANGUAGEGET to
handle the language active in the server.

All the listed variables are assigned only if the function execution is successful; in case of errors (for example an
invalid alarm name), then nothing is assigned or reset, and the variables will retain their old values.

example

_TRACE (ALARM_GETNAMEFROMKEY(11));

_TRACE (ALARM_GETMSGFROMKEY(11));

_TRACE (ANY_TO_STRING(ALARM_GETIDFROMKEY(11)));

ALARM_GETINFO (0);

_TRACE(ALARM_NAME);

_TRACE(ALARM_MESSAGE);

_TRACE(ANY_TO_STRING(ALARM_ID));

_TRACE(ANY_TO_STRING(ALARM_KEY));

ALARM_GETINFO ("Alarm2");

_TRACE(ALARM_NAME);

_TRACE(ALARM_MESSAGE);

_TRACE(ANY_TO_STRING(ALARM_ID));

_TRACE(ANY_TO_STRING(ALARM_KEY));

 ST-Script Guidelines 1.38

 Page 410 of 562

ALARM_GETNAMEFROMKEY

Retrieves the name of an alarm with a given custom key.

NAME = ALARM_GETNAMEFROMKEY (KEY)

input

KEY : ANY_INT custom key of the alarm

output

NAME : WSTRING system name of the alarm

 ST-Script Guidelines 1.38

 Page 411 of 562

ALARM_GETIDFROMKEY

Retrieves the ID of an alarm with a given custom key.

ID = ALARM_GETIDFROMKEY (KEY)

input

KEY : ANY_INT custom key of the alarm

output

ID : UDINT system ID of the alarm

 ST-Script Guidelines 1.38

 Page 412 of 562

ALARM_GETMSGFROMKEY

Retrieves the description message of an alarm with a given custom key.

MESSAGE = ALARM_GETMSGFROMKEY (KEY)

input

KEY : ANY_INT custom key of the alarm

output

MESSAGE : WSTRING description message of the alarm

The returned message string is translated for the appropriate language.
If the execution of the script was invoked by a client, then the language currently active in that client is used.
If the execution of the script is instead triggered by a server event, then the server language is used; use
LANGUAGESET and LANGUAGEGET to handle the language active in the server.

 ST-Script Guidelines 1.38

 Page 413 of 562

ALARM_GETFIRSTPRJ

Retrieves information about the first alarm configured in the project, along with its events statistics.

ITER = ALARM_GETFIRSTPRJ ()

output

ITER : UDINT an iterator to be used in subsequent calls to ALARM_GETNEXTPRJ;
 ≥ 1 if at least an alarm exists in the project
 (0 otherwise);
 the information about the retrieved alarm is stored in a set of predefined

variables; see details below

If a valid iterator is returned (≥ 1), it means at least an alarm exists, and information about the first one is
stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the alarm
ALARM_RECKEY (DINT) : custom key of the alarm
ALARM_RECID (UDINT) : system ID of the alarm
ALARM_RECSTATE (UDINT) : state of the alarm (either 0 = OFF or 1 = ON)
ALARM_RECNUMINSTANCES (UDINT) : number of active instances currently registered for the alarm
ALARM_RECONNUMBER (UDINT) : number of active instances ever created for the alarm
ALARM_RECONDURATION (LTIME) : time ever spent by the system with this alarm in ON state

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no matching alarm found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

 ST-Script Guidelines 1.38

 Page 414 of 562

ALARM_GETNEXTPRJ

Retrieves information about the "next" alarm configured in the project, along with its events statistics.

ITER = ALARM_GETNEXTPRJ (LASTITER)

input

LASTITER : UDINT the iterator returned by the previous/last call to either an ALARM_GETFIRSTPRJ or
ALARM_GETNEXTPRJ function (to be used to handle the progress of a whole
acquisition loop)

output

ITER : UDINT an iterator to be used in further calls to ALARM_GETNEXTPRJ;
 ≥ 1 if "another" alarm has been found in the project
 (0 otherwise);
 the information about the retrieved alarm is stored in a set of predefined

variables; see details below

Can be used only after an acquisition loop has already been started with a call to ALARM_GETFIRSTPRJ.
Retrieves the alarm record following the one returned by the last call to an ALARM_GETFIRSTPRJ or
ALARM_GETNEXTPRJ function.
Affects the exact same set of variables as the ALARM_GETFIRSTPRJ itself.
If a valid iterator is returned (≥ 1), it means a further alarm has been found in the project, and information
about it has been stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the alarm
ALARM_RECKEY (DINT) : custom key of the alarm
ALARM_RECID (UDINT) : system ID of the alarm
ALARM_RECSTATE (UDINT) : state of the alarm (either 0 = OFF or 1 = ON)
ALARM_RECNUMINSTANCES (UDINT) : number of active instances currently registered for the alarm
ALARM_RECONNUMBER (UDINT) : number of active instances ever created for the alarm
ALARM_RECONDURATION (LTIME) : time ever spent by the system with this alarm in ON state

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no more matching alarm found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

example

VAR

 iter : UDINT;

END_VAR;

iter := ALARM_GETFIRSTPRJ ();

WHILE (iter > 0) DO

 IF ((ALARM_RECKEY >= 1000) AND (ALARM_RECKEY < 2000)) THEN // look for all the alarms with a

 // ... do something ... // custom key between 1000 and 1999

 END_IF;

 iter := ALARM_GETNEXTPRJ (iter);

END_WHILE;

 ST-Script Guidelines 1.38

 Page 415 of 562

ALARM_GETFIRSTON

Retrieves information about the first project alarm currently in an ON state.

ITER = ALARM_GETFIRSTON ()

output

ITER : UDINT an iterator to be used in subsequent calls to ALARM_GETNEXTON;
 ≥ 1 if a (first) alarm in ON state has been found and returned
 (0 otherwise);
 the information about the retrieved alarm is stored in a set of predefined

variables; see details below

If a valid iterator is returned (≥ 1), it means at least an alarm in ON state exists, and information about the first
one is stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the alarm
ALARM_RECKEY (DINT) : custom key of the alarm
ALARM_RECID (UDINT) : system ID of the alarm
ALARM_RECSTATE (UDINT) : state of the alarm (always 1 = ON)
ALARM_RECNUMINSTANCES (UDINT) : number of active instances currently registered for the alarm

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no matching alarm found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

 Note: "alarms in ON state" are not to be confused with "active alarms":

whereas an "active alarm" is a registration of occurrence of an alarm that can either be still ON or still to be
acknowledged by a user (note that for each project alarm, multiple active registrations could exist at any given time), an
"alarm in ON state" is simply a project alarm whose activation condition is still present (these alarms have at least one
active registration, and their last registration has not received an OFF notification yet).
The difference applies to ISA alarms only; an example:
- alarm_1 ON event  the alarm is now ON; 1 active registration is created
- alarm_1 OFF event  the alarm is now OFF; 1 active registration still exists (not removed by an acknowledge)
- alarm_1 ON event  the alarm is now ON; 2 active registrations now exist (the ON event creates a new one)
- alarm_1 OFF event  the alarm is now OFF; 2 active registrations still exist
- a global acknowledge occurs  the active registrations are removed

 ST-Script Guidelines 1.38

 Page 416 of 562

ALARM_GETNEXTON

Retrieves information about the "next" project alarm currently in an ON state.

ITER = ALARM_GETNEXTON (LASTITER)

input

LASTITER : UDINT the iterator returned by the previous/last call to either an ALARM_GETFIRSTON or
ALARM_GETNEXTON function (to be used to handle the progress of a whole
acquisition loop)

output

ITER : UDINT an iterator to be used in further calls to ALARM_GETNEXTON;
 ≥ 1 if "another" alarm in ON state has been found and returned
 (0 otherwise);
 the information about the retrieved alarm is stored in a set of predefined

variables; see details below

Can be used only after an acquisition loop has already been started with a call to ALARM_GETFIRSTON.
Retrieves the matching alarm record following the one returned by the last call to an ALARM_GETFIRSTON or
ALARM_GETNEXTON function.
Affects the exact same set of variables as the ALARM_GETFIRSTON itself.
If a valid iterator is returned (≥ 1), it means a further alarm in ON state has been found, and information about
it has been stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the alarm
ALARM_RECKEY (DINT) : custom key of the alarm
ALARM_RECID (UDINT) : system ID of the alarm
ALARM_RECSTATE (UDINT) : state of the alarm (always 1 = ON)
ALARM_RECNUMINSTANCES (UDINT) : number of active instances currently registered for the alarm

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no more matching alarm found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

See the ALARM_GETNEXTPRJ description for an example about the usage of these ALARM_GETFIRST$$$ and
ALARM_GETNEXT$$$ pairs in loop.

 ST-Script Guidelines 1.38

 Page 417 of 562

ALARM_GETFIRSTACTIVE

Retrieves information about the first active alarm registration currently stored.

ITER = ALARM_GETFIRSTACTIVE ()

output

ITER : UDINT an iterator to be used in subsequent calls to ALARM_GETNEXTACTIVE;
 ≥ 1 if a (first) active alarm registration has been found and returned
 (0 otherwise);
 the information about the retrieved alarm is stored in a set of predefined

variables; see details below

If a valid iterator is returned (≥ 1), it means at least an active alarm registration exists, and information about
the first one is stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the associated alarm
ALARM_RECKEY (DINT) : custom key of the associated alarm
ALARM_RECID (UDINT) : system ID of the associated alarm
ALARM_RECINSTANCEID (UDINT) : system ID of the active alarm registration
ALARM_RECSTATE (UDINT) : state of the registration (0 = OFF, 1 = ON, 2 = ON+OFF, 3 = ON+ACK)
ALARM_RECMESSAGE (WSTRING) : description message of the registration
ALARM_RECONTIME (LDT) : timestamp of the registration ON event
ALARM_RECONUSER (WSTRING) : username recorded with the registration ON event
ALARM_RECALTTIME (LDT) : timestamp of the registration secondary (OFF/ACK) event
ALARM_RECALTUSER (WSTRING) : username recorded with the registration secondary (OFF/ACK) event

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no matching alarm found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

 Note: "active alarms" are not to be confused with "alarms in ON state":

whereas an "active alarm" is a registration of occurrence of an alarm that can either be still ON or still to be
acknowledged by a user (note that for each project alarm, multiple active registrations could exist at any given time), an
"alarm in ON state" is simply a project alarm whose activation condition is still present (these alarms have at least one
active registration, and their last registration has not received an OFF notification yet).
The difference applies to ISA alarms only; an example:
- alarm_1 ON event  the alarm is now ON; 1 active registration is created
- alarm_1 OFF event  the alarm is now OFF; 1 active registration still exists (not removed by an acknowledge)
- alarm_1 ON event  the alarm is now ON; 2 active registrations now exist (the ON event creates a new one)
- alarm_1 OFF event  the alarm is now OFF; 2 active registrations still exist
- a global acknowledge occurs  the active registrations are removed

 ST-Script Guidelines 1.38

 Page 418 of 562

ALARM_GETNEXTACTIVE

Retrieves information about the "next" active alarm registration currently stored.

ITER = ALARM_GETNEXTACTIVE (LASTITER)

input

LASTITER : UDINT the iterator returned by the previous/last call to either an ALARM_GETFIRSTACTIVE
or ALARM_GETNEXTACTIVE function (to be used to handle the progress of a whole
acquisition loop)

output

ITER : UDINT an iterator to be used in further calls to ALARM_GETNEXTACTIVE;
 ≥ 1 if "another" active alarm registration has been found and returned
 (0 otherwise);
 the information about the retrieved alarm is stored in a set of predefined

variables; see details below

Can be used only after an acquisition loop has already been started with a call to ALARM_GETFIRSTACTIVE.
Retrieves the matching alarm record following the one returned by the last call to an ALARM_GETFIRSTACTIVE or
ALARM_GETNEXTACTIVE function.
Affects the exact same set of variables as the ALARM_GETFIRSTACTIVE itself.
If a valid iterator is returned (≥ 1), it means a further active alarm registration has been found, and information
about it has been stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the associated alarm
ALARM_RECKEY (DINT) : custom key of the associated alarm
ALARM_RECID (UDINT) : system ID of the associated alarm
ALARM_RECINSTANCEID (UDINT) : system ID of the active alarm registration
ALARM_RECSTATE (UDINT) : state of the registration (0 = OFF, 1 = ON, 2 = ON+OFF, 3 = ON+ACK)
ALARM_RECMESSAGE (WSTRING) : description message of the registration
ALARM_RECONTIME (LDT) : timestamp of the registration ON event
ALARM_RECONUSER (WSTRING) : username recorded with the registration ON event
ALARM_RECALTTIME (LDT) : timestamp of the registration secondary (OFF/ACK) event
ALARM_RECALTUSER (WSTRING) : username recorded with the registration secondary (OFF/ACK) event

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no more matching alarm found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

See the ALARM_GETNEXTPRJ description for an example about the usage of these ALARM_GETFIRST$$$ and
ALARM_GETNEXT$$$ pairs in loop.

 ST-Script Guidelines 1.38

 Page 419 of 562

ALARM_GETFIRSTHISTORY

Retrieves information about the first alarm history record currently stored.

ITER = ALARM_GETFIRSTHISTORY ()

output

ITER : UDINT an iterator to be used in subsequent calls to ALARM_GETNEXTHISTORY;
 ≥ 1 if a (first) alarm history record has been found and returned
 (0 otherwise);
 the information about the retrieved record is stored in a set of predefined

variables; see details below

If a valid iterator is returned (≥ 1), it means at least an alarm history record exists, and information about the
first one is stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the associated alarm
ALARM_RECKEY (DINT) : custom key of the associated alarm
ALARM_RECID (UDINT) : system ID of the associated alarm
ALARM_RECEVENTTYPE (UDINT) : type of the recorded alarm event (0 = ON, 1 = OFF, 2 = ACK)
ALARM_RECMESSAGE (WSTRING) : description message of the alarm
ALARM_RECEVENTTIME (LDT) : timestamp of the alarm event
ALARM_RECEVENTUSER (WSTRING) : username recorded with the alarm event

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no matching record found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

 ST-Script Guidelines 1.38

 Page 420 of 562

ALARM_GETNEXTHISTORY

Retrieves information about the "next" alarm history record currently stored.

ITER = ALARM_GETNEXTHISTORY (LASTITER)

input

LASTITER : UDINT the iterator returned by the previous/last call to either an ALARM_GETFIRSTHISTORY
or ALARM_GETNEXTHISTORY function (to be used to handle the progress of a whole
acquisition loop)

output

ITER : UDINT an iterator to be used in further calls to ALARM_GETNEXTHISTORY;
 ≥ 1 if "another" alarm history record has been found and returned
 (0 otherwise);
 the information about the retrieved record is stored in a set of predefined

variables; see details below

Can be used only after an acquisition loop has already been started with a call to ALARM_GETFIRSTHISTORY.
Retrieves the matching alarm record following the one returned by the last call to an ALARM_GETFIRSTHISTORY or
ALARM_GETNEXTHISTORY function.
Affects the exact same set of variables as the ALARM_GETFIRSTHISTORY itself.
If a valid iterator is returned (≥ 1), it means a further alarm history record has been found, and information
about it has been stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the associated alarm
ALARM_RECKEY (DINT) : custom key of the associated alarm
ALARM_RECID (UDINT) : system ID of the associated alarm
ALARM_RECEVENTTYPE (UDINT) : type of the recorded alarm event (0 = ON, 1 = OFF, 2 = ACK)
ALARM_RECMESSAGE (WSTRING) : description message of the alarm
ALARM_RECEVENTTIME (LDT) : timestamp of the alarm event
ALARM_RECEVENTUSER (WSTRING) : username recorded with the alarm event

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no more matching record found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

See the ALARM_GETNEXTPRJ description for an example about the usage of these ALARM_GETFIRST$$$ and
ALARM_GETNEXT$$$ pairs in loop.

 ST-Script Guidelines 1.38

 Page 421 of 562

ALARM_GETFIRSTHPACK

Retrieves information about the first alarm packed history record currently stored.

ITER = ALARM_GETFIRSTHPACK ([NEWFIRST])

input

NEWFIRST : BOOL [OPTIONAL] TRUE if the browse loop is meant to return records sorted from the
newest to the oldest;

 if missing the records start from the oldest

output

ITER : UDINT an iterator to be used in subsequent calls to ALARM_GETNEXTHPACK;
 ≥ 1 if a (first) record has been found and returned
 (0 otherwise);
 the information about the retrieved record is stored in a set of predefined

variables; see details below

“Packed history records” refer to alarm records built using matching couples of basic history records; each
“packed record” contains information about matching ON event and OFF event of the same alarm instance.
Most of the information come from the ON event record, while the OFF event is used to extend the
information with the timestamp of the OFF event itself.
The functionality is mainly meant for simple events management, or at least for ISA alarms with “single
instance” behaviour enabled: ACK events (if present) are ignored, and multi-instance alarms might cause
inconsistencies among the retrieved data.

If a valid iterator is returned (≥ 1), it means at least a “alarm packed history record” exists, and information
about the first one is stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the associated alarm
ALARM_RECKEY (DINT) : custom key of the associated alarm
ALARM_RECID (UDINT) : system ID of the associated alarm
ALARM_RECEVENTTYPE (UDINT) : type of the recorded alarm event (0 = ON, 1 = OFF, 2 = ACK)
ALARM_RECMESSAGE (WSTRING) : description message of the alarm
ALARM_RECEVENTUSER (WSTRING) : username recorded with the alarm event
ALARM_RECONTIME (LDT) : timestamp of the ON event
ALARM_RECALTTIME (LDT) : timestamp of the OFF event

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no matching record found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

 ST-Script Guidelines 1.38

 Page 422 of 562

ALARM_GETNEXTHPACK

Retrieves information about the "next" alarm packed history record currently stored.

ITER = ALARM_GETNEXTHPACK (LASTITER [, NEWFIRST])

input

LASTITER : UDINT the iterator returned by the previous/last call to either an ALARM_GETFIRSTHPACK
or ALARM_GETNEXTHPACK function (to be used to handle the progress of a whole
acquisition loop)

NEWFIRST : BOOL [OPTIONAL] TRUE if the browse loop is meant to return records sorted from the
newest to the oldest

 if missing the records start from the oldest

output

ITER : UDINT an iterator to be used in further calls to ALARM_GETNEXTHPACK;
 ≥ 1 if "another" record has been found and returned
 (0 otherwise);
 the information about the retrieved record is stored in a set of predefined

variables; see details below

See ALARM_GETFIRSTHPACK for information about “packed history records”.

Can be used only after an acquisition loop has already been started with a call to ALARM_GETFIRSTHPACK.
Retrieves the matching alarm record following the one returned by the last call to an ALARM_GETFIRSTHPACK or
ALARM_GETNEXTHPACK function.
Affects the exact same set of variables as the ALARM_GETFIRSTHPACK itself.
If a valid iterator is returned (≥ 1), it means a further “alarm packed history record” has been found, and
information about it has been stored in the following set of predefined variables:

ALARM_RECNAME (WSTRING) : name of the associated alarm
ALARM_RECKEY (DINT) : custom key of the associated alarm
ALARM_RECID (UDINT) : system ID of the associated alarm
ALARM_RECEVENTTYPE (UDINT) : type of the recorded alarm event (0 = ON, 1 = OFF, 2 = ACK)
ALARM_RECMESSAGE (WSTRING) : description message of the alarm
ALARM_RECEVENTUSER (WSTRING) : username recorded with the alarm event
ALARM_RECONTIME (LDT) : timestamp of the ON event
ALARM_RECALTTIME (LDT) : timestamp of the OFF event

No other predefined system variable is affected by the function;
no predefined variable at all is affected if the function returns 0 (no more matching record found).
See the <VARIABLES> section for the complete list of the ALARM_REC$$$ variables.

See the ALARM_GETNEXTPRJ description for an example about the usage of these ALARM_GETFIRST$$$ and
ALARM_GETNEXT$$$ pairs in loop.

 ST-Script Guidelines 1.38

 Page 423 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the alarms management:

Variables for identifiers info

ALARM_NAME type WSTRING
 access R

gives the name of the alarm treated by the last successful execution of the
function ALARM_GETINFO

ALARM_ID type UDINT
 access R

gives the ID of the alarm treated by the last successful execution of the
function ALARM_GETINFO

ALARM_KEY type DINT
 access R

gives the custom key of the alarm treated by the last successful execution
of the function ALARM_GETINFO

ALARM_MESSAGE type WSTRING
 access R

gives the description message of the alarm treated by the last successful
execution of the function ALARM_GETINFO;
the message is translated with the most appropriate language (from either
a client or the server), depending on the state of the caller; see the
mentioned function for details

 ST-Script Guidelines 1.38

 Page 424 of 562

Variables for browsed records

- all the following variables are prepared by successful executions of any function of the family
ALARM_GETFIRST/NEXTxxx (ALARM_GETFIRSTPRJ, ALARM_GETNEXTPRJ, ALARM_GETFIRSTON, ALARM_GETNEXTON,
ALARM_GETFIRSTACTIVE, ALARM_GETNEXTACTIVE, ALARM_GETFIRSTHISTORY, ALARM_GETNEXTHISTORY); failed executions
won't affect them;
- not every function will affect them all: depending on the carried information, some are reserved to specific
query contexts (see details in the table below);
- message-related variables are translated with the most appropriate language (from either a client or the
server), depending on the state of the caller;
- record "states" can have different set of values depending on the involved alarms context;
- more detailed information can be found in the description of each browsing function, and among the notes
after the table below.

variable name type contexts

ALARM_RECNAME WSTRING -PRJ , -ON , -ACTIVE , -HISTORY , -HPACK
ALARM_RECKEY DINT -PRJ , -ON , -ACTIVE , -HISTORY , -HPACK
ALARM_RECID UDINT -PRJ , -ON , -ACTIVE , -HISTORY , -HPACK
ALARM_RECSTATE UDINT -PRJ , -ON , -ACTIVE
ALARM_RECNUMINSTANCES UDINT -PRJ , -ON
ALARM_RECONNUMBER UDINT -PRJ
ALARM_RECONDURATION LTIME -PRJ
ALARM_RECINSTANCEID UDINT -ACTIVE
ALARM_RECMESSAGE WSTRING -ACTIVE , -HISTORY , -HPACK
ALARM_RECONTIME LDT -ACTIVE , -HPACK
ALARM_RECONUSER WSTRING -ACTIVE
ALARM_RECALTTIME LDT -ACTIVE , -HPACK
ALARM_RECALTUSER WSTRING -ACTIVE
ALARM_RECEVENTTYPE UDINT -HISTORY , -HPACK
ALARM_RECEVENTTIME LDT -HISTORY
ALARM_RECEVENTUSER WSTRING -HISTORY , -HPACK

ALARM_RECNAME type WSTRING
 access R
 affected by browsing functions for the contexts: -PRJ, -ON, -ACTIVE, -HISTORY

gives the name of the alarm associated to the retrieved record

ALARM_RECKEY type DINT
 access R
 affected by browsing functions for the contexts: -PRJ, -ON, -ACTIVE, -HISTORY

gives the custom key identifier of the alarm associated to the retrieved record

ALARM_RECID type UDINT
 access R
 affected by browsing functions for the contexts: -PRJ, -ON, -ACTIVE, -HISTORY

gives the system ID of the alarm associated to the retrieved record

ALARM_RECSTATE type UDINT
 access R
 affected by browsing functions for the contexts: -PRJ, -ON, -ACTIVE

gives the state of the retrieved record; could have different meaning
depending on the specific alarms context:
for -PRJ: 0 = OFF, 1 = ON
for -ON: 1 = ON
for -ACTIVE: 0 = OFF, 1 = ON, 2 = ON+OFF, 3 = ON+ACK

 ST-Script Guidelines 1.38

 Page 425 of 562

ALARM_RECNUMINSTANCES type UDINT
 access R
 affected by browsing functions for the contexts: -PRJ, -ON

gives the number of active instances currently recorded for the referenced
alarm

ALARM_RECONNUMBER type UDINT
 access R
 affected by browsing functions for the contexts: -PRJ

gives the number of ON events counted for the referenced alarm since the
start of the statistics collection

ALARM_RECONDURATION type LTIME
 access R
 affected by browsing functions for the contexts: -PRJ

gives the total time the referenced alarm has spent in ON state since the start
of the statistics collection

ALARM_RECINSTANCEID type UDINT
 access R
 affected by browsing functions for the contexts: -ACTIVE

gives the instance ID of the retrieved active alarm registration

ALARM_RECMESSAGE type WSTRING
 access R
 affected by browsing functions for the contexts: -ACTIVE, -HISTORY

gives the alarm message built for the retrieved record, translated using the
most appropriate language (from either a client or the server), depending on
the state of the caller

ALARM_RECONTIME type LDT
 access R
 affected by browsing functions for the contexts: -ACTIVE

gives the timestamp of the ON event of the retrieved active instance

ALARM_RECONUSER type WSTRING
 access R
 affected by browsing functions for the contexts: -ACTIVE

gives the username recorded with the ON event of the retrieved active
instance

ALARM_RECALTTIME type LDT
 access R
 affected by browsing functions for the contexts: -ACTIVE

gives the timestamp of the secondary event (either an OFF or an ACK event)
of the retrieved active instance; returns 0 if only the ON event exists

ALARM_RECALTUSER type WSTRING
 access R
 affected by browsing functions for the contexts: -ACTIVE

gives the username recorded with the secondary event (either an OFF or an
ACK event) of the retrieved active instance

ALARM_RECEVENTTYPE type UDINT
 access R
 affected by browsing functions for the contexts: -HISTORY

gives the event identifier of the retrieved history record;

 ST-Script Guidelines 1.38

 Page 426 of 562

expected values are: 0 = ON, 1 = OFF, 2 = ACK

ALARM_RECEVENTTIME type LDT
 access R
 affected by browsing functions for the contexts: -HISTORY

gives the timestamp of the retrieved history record

ALARM_RECEVENTUSER type WSTRING
 access R
 affected by browsing functions for the contexts: -HISTORY

gives the username stored with the retrieved history record

 ST-Script Guidelines 1.38

 Page 427 of 562

14. RUNTIME - RECIPES

RECIPE_LOAD

Loads a given recipe from archive to buffer.

RECIPE_LOAD (STRUCTURE, RECIPE [, NOLOG])

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the needed recipe
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

 ST-Script Guidelines 1.38

 Page 428 of 562

RECIPE_SAVE

Saves in archive the recipe currently in buffer.

RECIPE_SAVE (STRUCTURE [, RECIPE [, NOLOG]])

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING [OPTIONAL] a new name for the saved recipe
 if missing (or empty), the recipe is saved with the name currently

in buffer
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

The optional parameter allows the method to work both as a "Save" and as a "SaveAs" instruction:
giving an explicit name for the recipe will force the new name to be stored in the name buffer tag before the
recipe is saved; otherwise the name already in the buffer is used.
This also means that if a name is not given, then in the buffer there MUST be a valid name, otherwise the call
fails.

In both cases (with or without a recipe name explicitly given) existing recipes will be silently overwritten.
In case overwrites have to be avoided, it is responsibility of the programmer to check the recipes validity with
information from RECIPE_EXIST and RECIPE_GETCURNAME.

example

VAR

 rcstr : WSTRING [64];

 rcnum : UDINT;

END_VAR;

rcstr := 'Recipe1';

rcnum := RECIPE_GETNUMBER (rcstr); // = 0 (starting with empty archive)

RECIPE_SAVE (rcstr, 'AA'); // save new recipe

rcnum := RECIPE_GETNUMBER (rcstr); // = 1 (AA added)

RECIPE_SAVE (rcstr, 'BB'); // save new recipe

rcnum := RECIPE_GETNUMBER (rcstr); // = 2 (BB added)

RECIPE_SAVE (rcstr); // re-save current recipe (BB)

rcnum := RECIPE_GETNUMBER (rcstr); // = 2 (BB overwritten)

RECIPE_SAVE (rcstr, 'AA'); // re-save AA

rcnum := RECIPE_GETNUMBER (rcstr); // = 2 (AA overwritten)

 ST-Script Guidelines 1.38

 Page 429 of 562

RECIPE_DOWNLOAD

Transfers a recipe from archive to device.

RECIPE_DOWNLOAD (STRUCTURE, RECIPE [, SYNC [, NOLOG]])

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the involved recipe
SYNC : BOOL [OPTIONAL] TRUE if the transfer must be synchronized;
 FALSE otherwise;
 if missing, the default is FALSE (no synchronization)
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

The device tags are written with values taken directly from the archive, without affecting the buffer tags.

Note that the download operation involves communication with external devices and could take up a long time
to complete.
Transfers are blocking for the calling script: this function terminates only after the whole transfer has been
completed, so the programmer must be aware that the script will be standing in wait for its whole duration.
See RECIPE_TRANSFERBUSY and RECIPE_TRANSFERWAIT for information about transfers synchronization issues.

 ST-Script Guidelines 1.38

 Page 430 of 562

RECIPE_UPLOAD

Transfers a recipe from device to archive.

RECIPE_UPLOAD (STRUCTURE [, RECIPE [, SYNC [, NOLOG]]])

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING [OPTIONAL] the name used to save the recipe in the archive;
 can be used to force a specific name for the stored recipe, and is

mandatory if there is no other name source for the uploaded
recipe;

 can be omitted instead (or given empty) if the recipe in the device
already has a name (if the recipe structure already includes a
name tag on device);

SYNC : BOOL [OPTIONAL] TRUE if the transfer must be synchronized;
 FALSE otherwise;
 if missing, the default is FALSE (no synchronization)
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

The values of the device tags are read and stored directly in the archive, without affecting the buffer tags.

Note that in order for this method to be usable, a recipe name must be somehow available;
the possible name sources are:
- a name tag pre-configured by the recipe structure on the device (the recipe needs to include its name

mapped on a device tag): in this case the name will be read from the device when the recipe is uploaded;
- the optional RECIPE parameter passed to this function.
If the optional name is passed here, then it has precedence over the device name tag.
If there is no RECIPE parameter instead, or if an empty string is given, then the name in the device tag is used.
If none of the two is available, then an error is issued.

Whatever the source, the name used is assigned to the recipe and stored along with it.
Existing recipes (already in archive with matching name) will be silently overwritten.

Note that the upload operation involves communication with external devices and could take up a long time to
complete.
Transfers are blocking for the calling script: this function terminates only after the whole transfer has been
completed, so the programmer must be aware that the script will be standing in wait for its whole duration.
See RECIPE_TRANSFERBUSY and RECIPE_TRANSFERWAIT for information about transfers synchronization issues.

 ST-Script Guidelines 1.38

 Page 431 of 562

RECIPE_DOWNLOADBUF

Transfers a recipe from buffer to device.

RECIPE_DOWNLOADBUF (STRUCTURE [, SYNC [, NOLOG]])

input

STRUCTURE : ANY_STRING the name of the involved structure
SYNC : BOOL [OPTIONAL] TRUE if the transfer must be synchronized;
 FALSE otherwise;
 if missing, the default is FALSE (no synchronization)
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

The current values of the buffer tags are written in the device; the archive is not affected by the operation.

Note that the download operation involves communication with external devices and could take up a long time
to complete.
Transfers are blocking for the calling script: this function terminates only after the whole transfer has been
completed, so the programmer must be aware that the script will be standing in wait for its whole duration.
See RECIPE_TRANSFERBUSY and RECIPE_TRANSFERWAIT for information about transfers synchronization issues.

 ST-Script Guidelines 1.38

 Page 432 of 562

RECIPE_UPLOADBUF

Transfers a recipe from device to buffer.

RECIPE_UPLOADBUF (STRUCTURE [, SYNC [, NOLOG]])

input

STRUCTURE : ANY_STRING the name of the involved structure
SYNC : BOOL [OPTIONAL] TRUE if the transfer must be synchronized;
 FALSE otherwise;
 if missing, the default is FALSE (no synchronization)
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

The values of the device tags are read and copied in the buffer tags; the archive is not affected by the
operation.

Note that the download operation involves communication with external devices and could take up a long time
to complete.
Transfers are blocking for the calling script: this function terminates only after the whole transfer has been
completed, so the programmer must be aware that the script will be standing in wait for its whole duration.
See RECIPE_TRANSFERBUSY and RECIPE_TRANSFERWAIT for information about transfers synchronization issues.

 ST-Script Guidelines 1.38

 Page 433 of 562

RECIPE_TRANSFERBUSY

Checks whether a recipe transfer is currently in progress.

BUSY = RECIPE_TRANSFERBUSY ()

output

BUSY : BOOL TRUE if a transfer is in progress;
 FALSE otherwise

In other words, this function states whether the recipes transfers engine is busy or not; checks are in order
since only one (asynchronous) transfer at a time can be executed.
This function is meant to be used along with the transfer functions (RECIPE_UPLOAD, RECIPE_DOWNLOAD,
RECIPE_UPLOADBUF, RECIPE_DOWNLOADBUF) to allow the synchronization of scripts and predefined functions, or
simply to let the programmer to implement some way to show information about the panel activity.

About the transfers synchronizations

All the transfer functions called by scripts are blocking, meaning they guarantee that their operation is
complete when they exit to pass to the next script step. So, from this point of view, all the scripts operations
are handled synchronously.
Transfers, though, can be requested and executed by different contexts, not directly connected to the scripts:
they could be requested by events predefined functions, by recipe views menu commands, and so on; so it is
actually possible to reach a point in a script where a transfer request has to be submitted, while another is
already in progress.
This RECIPE_TRANSFERBUSY allows the script to be aware of this situation, and handle the busy state accordingly.

example

FUNCTION WaitForTransfer

 WHILE RECIPE_TRANSFERBUSY() DO

 SLEEP (1);

 END_WHILE;

END_FUNCTION;

WaitForTransfer ();

RECIPE_DOWNLOAD ('Recipe1', FALSE);

See also RECIPE_TRANSFERWAIT for another tool to handle transfers' asynchronicity.

example

RECIPE_TRANSFERWAIT ();

RECIPE_UPLOAD ('Recipe1', FALSE);

 ST-Script Guidelines 1.38

 Page 434 of 562

RECIPE_TRANSFERWAIT

Waits for the termination of a transfer currently in progress.

WAITED = RECIPE_TRANSFERWAIT ()

output

WAITED : BOOL TRUE if the function actually waited for a transfer in progress;
 FALSE if there was nothing to wait for

When called, this function blocks the script until the transfer in progress has been completed; if there is no
transfer in progress, the function immediately exits.

Like the RECIPE_TRANSFERBUSY, this function is used to handle the synchronization of recipes transfers and other
script operations (needed when transfers could have been executed by different contexts); see
RECIPE_TRANSFERBUSY information and issues on the matter.

 ST-Script Guidelines 1.38

 Page 435 of 562

RECIPE_DELETE

Deletes a recipe (or all the recipes) from a structure archive.

RECIPE_DELETE (STRUCTURE [, RECIPE [, NOLOG]])

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING [OPTIONAL] name of the recipe that has to be removed
 if missing (or empty), then ALL the recipes of the structure are

removed
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

about deletions

The recipes structures archives are organized in "records": every time a new recipe is stored, a record is taken
up; every time a recipe is deleted a used record is released.
Note though that "released" records are not removed from the archive: they remain as "reusable" slots; they
still take up space in the archive file, but they can be used in the future by new saved recipes.
This mechanic allows better performances in the recipes load/save operations, and allows all the existing
recipes to retain their IDs (defined as base-1 indexes of their position in the archive).

For example:
- if recipes A and B are saved in an empty archive, they will take its 1st and 2nd records;
- if now recipe A is deleted, then the 1st record becomes free, and the recipe B is still in the 2nd record;
- if now a new recipe C is saved, it is stored in the 1st record, recognized as free.

Programmers must be aware of this mechanics, since some of the scripting instructions make use of it.
For example, the function RECIPE_GETNUMBER is used to retrieve the number of valid recipes stored in an archive,
while the function RECIPE_GETRECORDS is used to retrieve the total number or records, that includes records used
by valid recipes and records released and retained as free.
Also, as another example, the function RECIPE_GETINFO makes use of the mentioned records IDs (indexes): the
programmer must know how the given IDs could point to either actual recipes or free archive slots.

Remember that it is always possible to explicitly request a cleanup of the archives records: the instruction
RECIPE_PACKARCHIVE removes from the archive all the empty slots and reorganize the valid recipes records in a
continuous sequence.
For example:
- if recipes A and B are stored in the 1st and 3rd records, while the 2nd record is currently free,
- after a RECIPE_PACKARCHIVE directive, the free slot disappears, and the recipes simply take the 1st and 2nd record.
The programmer must be aware of the fact that after a pack request, the IDs of the recipes will be different.

A final note: to allow the best possible performances of the archive accesses, after a RECIPE_DELETE is called to
remove all the recipes of a structure (without the 2nd parameter), a further call to RECIPE_PACKARCHIVE is always
recommended.

Several examples throughout this document are making use of this function; see especially RECIPE_GETNUMBER
and RECIPE_PACKARCHIVE.

 ST-Script Guidelines 1.38

 Page 436 of 562

 ST-Script Guidelines 1.38

 Page 437 of 562

RECIPE_RENAME

Renames a recipe existing in a structure archive.

RECIPE_RENAME (STRUCTURE, OLDNAME, NEWNAME [, NOLOG])

input

STRUCTURE : ANY_STRING the name of the involved structure
OLDNAME : ANY_STRING the old name of the recipe
NEWNAME : ANY_STRING the new name of the recipe
NOLOG : BOOL [OPTIONAL] a flag usable to inhibit the logging of the associated runtime event

by the FDA auditor;
 TRUE means the event will not be logged;
 if missing, the default is FALSE (event logged)

 ST-Script Guidelines 1.38

 Page 438 of 562

RECIPE_PACKARCHIVE

Compacts the records of a structure archive.

RECIPE_PACKARCHIVE (STRUCTURE)

input

STRUCTURE : ANY_STRING the name of the involved structure

This method is used to remove all the free records from an archive and compact the remaining valid recipes in
a continuous sequence of records with consecutive IDs.

For example:
- start from an empty archive and add recipes A, B and C (RECIPE_SAVE)

the archive records will be: 1 (A) , 2 (B) , 3 (C)
the retrievable records information will be: RECIPE_GETNUMBER() = 3 , RECIPE_GETRECORDS() = 3

- now remove the recipe B (RECIPE_DELETE)
the archive records will be: 1 (A) , 2 (free) , 3 (C)
the retrievable records information will be: RECIPE_GETNUMBER() = 2 , RECIPE_GETRECORDS() = 3

- now execute an archive pack (RECIPE_PACKARCHIVE)
the archive records will be: 1 (A) , 2 (C)
the retrievable records information will be: RECIPE_GETNUMBER() = 2 , RECIPE_GETRECORDS() = 2

As seen in this last step, the programmer must be aware of the fact that the RECIPE_PACKARCHIVE might change
the IDs of the existing recipes (again: defined as base-1 indexes of their records within the archive).

See RECIPE_DELETE for notes regarding the management of deleted recipes and released records.

example

VAR

 rcstr : WSTRING [64] := 'Recipe1';

 rnrec, rntot : UDINT;

END_VAR;

rnrec := RECIPE_GETNUMBER (rcstr); rntot := RECIPE_GETRECORDS (rcstr); // = 0,0 (empty archive)

RECIPE_SAVE (rcstr, 'AA'); // adding recipe AA

RECIPE_SAVE (rcstr, 'BB'); // adding recipe BB

RECIPE_SAVE (rcstr, 'CC'); // adding recipe CC

rnrec := RECIPE_GETNUMBER (rcstr); rntot := RECIPE_GETRECORDS (rcstr); // = 3,3 (3 recipes available)

RECIPE_DELETE (rcstr, 'BB'); // deleting recipe BB

rnrec := RECIPE_GETNUMBER (rcstr); rntot := RECIPE_GETRECORDS (rcstr); // = 2,3 (2 recipes + 1 free)

rcnum := RECIPE_GETID (rcstr, 'CC'); // = 3 (still in 3
rd

 record)

RECIPE_PACKARCHIVE (rcstr); // packing the archive

rcnum := RECIPE_GETID (rcstr, 'CC'); // = 2 (now in 2
nd

 record)

rnrec := RECIPE_GETNUMBER (rcstr); rntot := RECIPE_GETRECORDS (rcstr); // = 2,2 (no more free slots)

RECIPE_DELETE (rcstr); // deleting all the recipes

rnrec := RECIPE_GETNUMBER (rcstr); rntot := RECIPE_GETRECORDS (rcstr); // = 0,2 (2 reusable records)

RECIPE_PACKARCHIVE (rcstr); // packing again the archive

rnrec := RECIPE_GETNUMBER (rcstr); rntot := RECIPE_GETRECORDS (rcstr); // = 0,0 (everything cleaned up)

 ST-Script Guidelines 1.38

 Page 439 of 562

RECIPE_CLEARBUFFER

Resets the values of all the buffer tags of a given structure.

RECIPE_CLEARBUFFER (STRUCTURE)

input

STRUCTURE : ANY_STRING the name of the involved structure

 ST-Script Guidelines 1.38

 Page 440 of 562

RECIPE_COMPARE

Compares the content of two recipes of a given structure, to see whether they are identical or not.

DIFFERENT = RECIPE_COMPARE (STRUCTURE, RECIPE1, RECIPE2)

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE1 : ANY_STRING the name of one of the recipes to be compared
RECIPE2 : ANY_STRING the name of the other recipe to be compared

output

DIFFERENT : BOOL TRUE if the compared recipes are different;
 FALSE if they are identical

The comparison only takes into account the user-defined fields values: standard information stored within the
recipe, such as recipe name, comment, ID and timestamp are ignored of course.

 ST-Script Guidelines 1.38

 Page 441 of 562

RECIPE_COMPARESET

Compares the content of a recipe in archive with the recipe values currently stored in a device or buffer tags
set.

DIFFERENCE = RECIPE_COMPARESET (STRUCTURE, RECIPE, USEDEVICE, RELOADDEVICE [, RESULTTAG])

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the recipe already in archive
USEDEVICE : BOOL FALSE if the recipe in archive has to be compared with the current buffer

tags set;
 TRUE if it has to be compared with the device tags set
RELOADDEVICE : BOOL only meaningful if the selected tags set is the device (if USEDEVICE is TRUE);

ignored otherwise;
 TRUE is used to state that the current device tags have to be updated with a

new recipe upload before the comparison is executed (ensure the
comparison is done with updated values from the device);

 FALSE means the comparison has to be done with the values already in the
device tags

RESULTTAG : ANY_STRING [OPTIONAL] the name of the tag that has to be used to store precise
comparison information about each recipe field;

 if existing, the tag must be an array of boolean elements, ideally
with enough elements to hold information about the recipe
name, comment, and all its configured fields;

 if explicitly given as an empty string, the system automatically
stores the result in the implicit comparison tag-array
automatically created by Crew™;

 if omitted, the result is not stored in a tag, but simply returned by
the function

output

DIFFERENCE : ANY the returned value is actually an ARRAY [] OF BOOL, but its dimension is not
fixed since it will depend on the number of fields in the indicated recipe;

 the precise number of fields should be equal to the number of recipe fields +
3 (3 more elements are reserved at the beginning of the array, for difference
information about the recipe overall, the recipe name and the recipe
comment);

 if an output tag name is given though, the number of elements of the array
will match that of the tag itself

The recipe already in archive isn’t transferred anywhere (buffer tags are not affected by the comparison).

As already explained, it is possible to execute the comparison between a recipe in archive and:
- the recipe currently stored in the buffer tags,
- the recipe currently stored in the device tags,
- the recipe currently present on the device, preemptively uploaded in the device tags.

The result tag is optional; if given, it must be an array of boolean elements (ideally big enough to hold
difference information about all the recipe fields). In this tag is automatically written an exact copy of the
DIFFERENCE value returned by the function.

The value returned by the function is an array of BOOL.

 ST-Script Guidelines 1.38

 Page 442 of 562

If a result tag name is given in input, then this array inherits the number of elements from the tag itself. If no
tag is given instead, this array has a number of elements equal to the number of fields of the targeted recipe +
3 (3 more fields for extra information).
The exact information stored in the returned array are:

1st element: a general flag, TRUE if a difference has been detected anywhere in the recipe;
2nd element: TRUE if a difference has been detected in the recipe NAME;
3rd element: TRUE if a difference has been detected in the recipe COMMENT;
next elements (one more element for each custom recipe field): TRUE if a difference has been detected in the

corresponding custom recipe field.
If the number of array elements has been inherited from the provided result tag, then it is possible that this
number doesn’t match the exact need of the recipe; in this case the function ignores the mismatch:
- if there are more elements than needed, then the extra ones are left unaffected (FALSE);
- if there are less elements than needed, then there will simply be missing information in the result.

For example, in case of a recipe with 4 custom fields, the ideal number of array elements is 4 + 3 = 7;
- if a tag array with 10 elements is given, then the last 3 elements in the result will be unused;
- if a tag with 5 elements is given, then the flags for the last 2 recipe fields will be missing in the answer.

 ST-Script Guidelines 1.38

 Page 443 of 562

RECIPE_COMPAREFIELD

Check whether the value of a recipe field of a specific recipe already in archive is different from the value
currently stored in its device tag.
This function automates the needed comparison activity, given a project that tries to keep the recipe
comparison flags updated after changes in specific fields; the function implicitly updates the flags stored in the
container tags automatically created by Crew™.
Similarly to the functions RECIPE_GETFIELDNAME and RECIPE_GETCOMPAREINDEX (see the related detailed
descriptions), the recipe field can be identified by one of several different information:
- by its name (as configured in the project);
- by its index (the field positional index in the recipe structure, possible only with custom fields);
- by the ID of its device tag (possible only with fields that actually have one);
- by an address match between its associated device tag and a further given tag (meant to be used to match

addresses with variable/variant tags, or in cases where different tags share the same address and the ID of
the actual device tag is not known).

DIFFERENT = RECIPE_COMPAREFIELD (STRUCTURE, RECIPE, FIELD [, MODE])

input

STRUCTURE : ANY_STRING the name of the involved recipe structure
RECIPE : ANY_STRING the name of the recipe already in archive
FIELD : ANY a variable information used to identify the field;

the meaning and type of this parameter depends on the value given to the
(optional) 4th parameter (see below); the possibilities are:

- MODE = RECIPEBYINDEX
FIELD type = ANY_INT
this FIELD parameter is the index (base-0) of the recipe field within the
recipe structure;
can range between 0 and RECIPE_GETFIELDSNUMBER - 1
this mode can only be used with custom fields, never with system fields

- MODE = RECIPEBYTAGID
FIELD type = UDINT
this FIELD parameter is the ID of the device tag associated to the recipe
field;
the given ID is expected to be a valid tag ID for the current project;
this mode can only be used with fields that actually have a device tag
association (all the custom fields and only the system fields with an explicit
device association)

- MODE = RECIPEBYTAGADD
FIELD type = UDINT
this FIELD parameter is the ID of a tag to be used for an address comparison
(the field is chosen if the address of its device tag is the same as the
address of the tag given here);
the given ID is expected to be a valid tag ID for the current project;
it is usually (not necessarily) the ID of a variable/variant tag;
this mode can only be used with fields that actually have a device tag
association (all the custom fields and only the system fields with an explicit
device association)

- MODE = RECIPEBYNAME (also the default, in case an explicit MODE is missing)
FIELD type = ANY_STRING
this FIELD parameter is the name of the recipe field (the static name
configured in the project);
this mode can be used with either custom or system fields; in case of
system fields names, the supported ones are:

 ST-Script Guidelines 1.38

 Page 444 of 562

- RECIPENAME ("RecipeName")
- RECIPECOMMENT ("Comment")

MODE : ANY_INT [OPTIONAL] an identifier code defining the nature of the information given in
the 2nd parameter, to be used to identify the recipe field (see
above); the supported codes are:
0 (RECIPEBYINDEX) the field is identified by its index (base-0, relative

to the recipe custom fields)
1 (RECIPEBYTAGID) the field is identified by the ID of its device tag

(only possible for fields with a device tag)
2 (RECIPEBYTAGADD) the field is identified by the address of its

device tag (only possible for fields with a device tag)
3 (RECIPEBYNAME) the field is identified by its name (this is the

default as well: omitting this parameter means the field is
identified by its preconfigured static name)

if missing, the default behaviour is RECIPEBYNAME

output

DIFFERENT : BOOL the result of the comparison:
 TRUE means the archive and device values are different;
 FALSE means the two values are equal

This function will not simply check and return the difference between the archive and the device values:
the comparison result will also be automatically stored in the appropriate flag element of the tag-array
configured as storage of the comparison flags. The ‘generic’ difference flag will be updated as well.

As also explained in the description of the functions RECIPE_GETFIELDNAME and RECIPE_GETCOMPAREINDEX, to further
explain the behaviour of the function in case of RECIPEBYTAGADD mode:
the identified field is the one associated to a device tag that has the same address as the current address of the
other (3rd parameter) identified tag;
the given tag can be a variable/variant tag, and is allowed to have a variable address; in this case the tag
address should have been evaluated and assigned before the invocation of this function (that means the tag
should have been read or written at least once before). The last evaluated address is matched against those of
all the device tags associated to recipe fields, until a suitable correspondence is found.

example

// Setting a difference bit in a flags array (usage example for recipes comparison)

// 4. automatic mode: based on the address match of a field’s tag

VAR CONSTANT

 _STRNAME : WSTRING [100] := "Recipe1";

 _RECNAME : WSTRING [100] := "a";

END_VAR;

FUNCTION CompareField

 VAR_INPUT

 tagid : UDINT;

 END_VAR;

 RECIPE_COMPAREFIELD (_STRNAME, _RECNAME, tagid, RECIPEBYTAGADD);

END_FUNCTION;

 ST-Script Guidelines 1.38

 Page 445 of 562

RECIPE_EXPORT

Exports in a CSV file the recipes of a given structure, or of all the structures.
Similar to RECIPE_EXPORTFLAT, but for ESA-formatted CSV files.

NUMREC = RECIPE_EXPORT (FILE [, STRUCTURE [, RECSLIST]])

input

FILE : ANY_STRING path and name of the exported file
STRUCTURE : ANY_STRING [OPTIONAL] the name of the involved structure;
 if missing, then all the recipes of ALL the structures are exported

together in the same file;
RECSLIST : ANY [OPTIONAL] list of recipes to export;
 an optional parameter usable to specify the exact list of recipes

that have to be included in the export;
 without this parameter, all the recipes in archive (optionally

limited to the given structure) will be included; if this list is
specified instead, then the recipes in archive will be included only
if part of the list;

 note that this list can only be given if a specific structure is given
as well (parameter STRUCTURE);

 the type of this parameter is formally specified as ANY, but the
only allowed types are actually strings (either STRING or
WSTRING, if one only recipe is required), or arrays of strings (of
either type, if a whole set of recipes is required)

output

NUMREC : UDINT number of exported recipes

The function is meant to create CSV files in ESA-format
(a custom ESA layout, as opposed to flat CSV records; see RECIPE_EXPORTFLAT below).

In case the RECSLIST parameter is used to specify more than a single recipe (a whole list of recipes given as an
array of strings), the array passed as parameter can either be exactly dimensioned to contain the precise
number of required recipes, or even bigger. If bigger arrays are used, then an empty string must be assigned as
an element, to mark the end of the list of names.

 ST-Script Guidelines 1.38

 Page 446 of 562

RECIPE_EXPORTFLAT

Exports in a CSV file the recipes of a given structure, or of all the structures.
Similar to RECIPE_EXPORT, but for flat CSV files.

NUMREC = RECIPE_EXPORTFLAT (FILE, STRUCTURE [, RECSLIST])

input

FILE : ANY_STRING path and name of the exported file
STRUCTURE : ANY_STRING the name of the involved structure;
 unlike with the RECIPE_EXPORT, this parameter is mandatory: generic flat CSV

files are not able to handle records of different recipes contemporarily;
RECSLIST : ANY [OPTIONAL] list of recipes to export;
 an optional parameter usable to specify the exact list of recipes

that have to be included in the export;
 without this parameter, all the recipes in archive (for the given

structure) will be included; if this list is specified instead, then the
recipes in archive will be included only if part of the list;

 the type of this parameter is formally specified as ANY, but the
only allowed types are actually strings (either STRING or
WSTRING, if one only recipe is required), or arrays of strings (of
either type, if a whole set of recipes is required)

output

NUMREC : UDINT number of exported recipes

The function is meant to create CSV files in a flat format, with semicolon-separated fields
(unlike the RECIPE_EXPORT, used to export CSV files with a custom ESA layout).

In case the RECSLIST parameter is used to specify more than a single recipe (a whole list of recipes given as an
array of strings), the array passed as parameter can either be exactly dimensioned to contain the precise
number of required recipes, or even bigger. If bigger arrays are used, then an empty string must be assigned as
an element, to mark the end of the list of names.

 ST-Script Guidelines 1.38

 Page 447 of 562

RECIPE_IMPORT

Imports from a CSV file the recipes of a given structure, or of all the structures.

NUMREC = RECIPE_IMPORT (FILE [, STRUCTURE [, RECSLIST]])

input

FILE : ANY_STRING path and name of the exported file
STRUCTURE : ANY_STRING [OPTIONAL] the name of the involved structure;
 if missing, then recipes of ALL the structures are imported from

the same file (ESA-format only)
RECSLIST : ANY [OPTIONAL] list of recipes to export;
 an optional parameter usable to specify the exact list of recipes

that have to be included in the export;
 without this parameter, all the recipes in archive (optionally

limited to the given structure) will be included; if this list is
specified instead, then the recipes in archive will be included only
if part of the list;

 note that this list can only be given if a specific structure is given
as well (parameter STRUCTURE);

 the type of this parameter is formally specified as ANY, but the
only allowed types are actually strings (either STRING or
WSTRING, if one only recipe is required), or arrays of strings (of
either type, if a whole set of recipes is required)

output

NUMREC : UDINT number of imported recipes

The function is automatically able to detect and handle files prepared with different encodings and layouts:
- ESA-format CSV files (can be UNICODE only),
- standard flat CSV, with semicolon-separated fields (either in UNICODE or ANSI),
- standard flat TXT, with TAB-separated fields (either in UNICODE or ANSI).

Note that files formatted with the ESA custom layout are able to contain definitions of recipes of different
structures at once: the structure of each recipe is defined within the file. This means the programmer is
allowed to use them with instructions meant to import the recipes of all of them contemporarily (or to choose
a specific structure among them).
Flat CSV files, instead, don't contain information about the structure: programmers are forced to specify the
structure the recipes are being imported for.

In case the RECSLIST parameter is used to specify more than a single recipe (a whole list of recipes given as an
array of strings), the array passed as parameter can either be exactly dimensioned to contain the precise
number of required recipes, or even bigger. If bigger arrays are used, then an empty string must be assigned as
an element, to mark the end of the list of names.

When this function succeeds, two conventional variables can be used to retrieve additional information about
the result:

RECIPE_IMPORTEDNEW gives the number of entirely new recipes, imported and added to the archive
RECIPE_IMPORTEDOLD gives the number of already known recipes, imported and replaced in the archive

In case of function failures, these variables are not affected (information from the last successful execution is
retained).

example

 ST-Script Guidelines 1.38

 Page 448 of 562

VAR

 rcstr : WSTRING [64] := 'Recipe1';

 rnrec, rntot, rnadd, rnchg : UDINT;

END_VAR;

rnrec := RECIPE_GETNUMBER (rcstr);

rntot := RECIPE_IMPORT ('/mydocs/test-flat.csv', rcstr); // must be <nradd> + <nrchg> from below

nradd := RECIPE_IMPORTEDNEW;

nrchg := RECIPE_IMPORTEDOLD;

rnrec := RECIPE_GETNUMBER (rcstr); // must be <rnrec> + <nradd> from above

rntot := RECIPE_IMPORT ('/mydocs/test-esa.csv'); // only ESA files usable for multiple structures

nradd := RECIPE_IMPORTEDNEW;

nrchg := RECIPE_IMPORTEDOLD;

 ST-Script Guidelines 1.38

 Page 449 of 562

RECIPE_PRINT

Prints the recipes of a given structure, or of all the structures.

NUMREC = RECIPE_PRINT ([STRUCTURE])

input

STRUCTURE : ANY_STRING [OPTIONAL] the name of the involved structure;
 if missing, then the recipes of ALL the structures are printed

output

NUMREC : UDINT number of printed recipes

 ST-Script Guidelines 1.38

 Page 450 of 562

RECIPE_GETCURNAME

Retrieves the recipe name currently set in the structure buffer.

NAME = RECIPE_GETCURNAME (STRUCTURE)

input

STRUCTURE : ANY_STRING the name of the involved structure

output

NAME : WSTRING the current recipe name

The function simply returns the current value of the buffer tag associated to the recipe name.

 ST-Script Guidelines 1.38

 Page 451 of 562

RECIPE_EXIST

Checks whether a given recipe exists in a structure archive.

EXIST = RECIPE_EXIST (STRUCTURE, RECIPE)

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the involved recipe

output

EXIST : BOOL TRUE if the specified recipe exists;
 FALSE otherwise

 ST-Script Guidelines 1.38

 Page 452 of 562

RECIPE_GETNUMBER

Retrieves the number of valid recipes currently stored in a structure archive.

NUMBER = RECIPE_GETNUMBER (STRUCTURE)

input

STRUCTURE : ANY_STRING the name of the involved structure

input

NUMBER : UDINT the number of used recipe records

See RECIPE_DELETE for notes regarding the management of deleted recipes and released records.

As per the explained mechanics, this function is used to retrieve the number of records actually used by
existing recipes (in other words the number of recipes); that is not necessarily the total number of records in
the archive (which is the aim of RECIPE_GETRECORDS).

example

VAR

 rcstr : WSTRING [64];

 rcnum : UDINT;

END_VAR;

rcstr := 'Recipe1';

rcstr := RECIPE_GETNUMBER (rcstr); // = 0 (starting with an empty archive)

rcstr := RECIPE_GETRECORDS (rcstr); // = 0 (starting with an empty archive)

RECIPE_SAVE (rcstr, 'AA'); // adding recipe AA

RECIPE_SAVE (rcstr, 'BB'); // adding recipe BB

RECIPE_SAVE (rcstr, 'CC'); // adding recipe CC

rcstr := RECIPE_GETNUMBER (rcstr); // = 3 (counting all 3 used records)

rcstr := RECIPE_GETRECORDS (rcstr); // = 3 (counting all 3 used records)

RECIPE_DELETE (rcstr, 'BB'); // deleting recipe BB only

rcstr := RECIPE_GETNUMBER (rcstr); // = 2 (only AA and CC remaining)

rcstr := RECIPE_GETRECORDS (rcstr); // = 3 (2 used records + 1 free reusable record)

RECIPE_DELETE (rcstr); // delete all the existing recipes

rcstr := RECIPE_GETNUMBER (rcstr); // = 0 (no more recipes)

rcstr := RECIPE_GETRECORDS (rcstr); // = 3 (3 free reusable records)

Further examples can be found throughout this document; see especially RECIPE_PACKARCHIVE and RECIPE_SAVE.

 ST-Script Guidelines 1.38

 Page 453 of 562

RECIPE_GETRECORDS

Retrieves the total number of the records taking up space in a structure archive.
The count includes both valid recipes records and empty records left by old removed recipes.

NUMBER = RECIPE_GETRECORDS (STRUCTURE)

input

STRUCTURE : ANY_STRING the name of the involved structure

input

NUMBER : UDINT the total number of used and unused records

See RECIPE_DELETE for notes regarding the management of deleted recipes and released records.

As per the explained mechanics, this function is used to retrieve the total number of records in the structure
archive, including both used and free records; that is not simply the number of the existing recipes (which is the
aim of RECIPE_GETNUMBER).

Several examples throughout this document are making use of this function; see especially RECIPE_GETNUMBER,
RECIPE_PACKARCHIVE, RECIPE_SAVE and RECIPE_GETINFO.

 ST-Script Guidelines 1.38

 Page 454 of 562

RECIPE_GETINFO

Retrieves the name (and additional information) of a recipe with known ID.

NAME = RECIPE_GETINFO (STRUCTURE, ID)

input

STRUCTURE : ANY_STRING the name of the involved structure
ID : UDINT the ID (base-1 index) of the recipe

output

NAME : WSTRING the name of the referenced recipe

Provided the given ID is valid (within the archive range and pointing to a used record), the function
immediately returns the name of the referenced recipe.
Further information though is stored in a set of dedicated variables:

RECIPE_NAME replicates the name of the recipe, already returned by this function
RECIPE_ID replicates the ID given to identify the recipe
RECIPE_COMMENT the comment stored along with the recipe
RECIPE_TIME the last save timestamp of the recipe

These variables are updated every time the RECIPE_GETINFO succeeds in retrieving a valid recipe and returning its
name. Errors will not affect their values (ERRNO and empty NAME strings can be used to detect failure
conditions): the information of the last successful execution is always retained.

This function is especially meant to be used in loops (where IDs spanning between 1 and RECIPE_GETRECORDS
could be used); but it can even be used to retrieve information about known targeted recipes, provided their ID
is known (see RECIPE_GETID as a method to retrieve IDs of recipes of known name).

example

VAR

 rcstr : WSTRING [64] := 'Recipe1';

 rname : WSTRING [64];

 rcnum , idx : UDINT;

 outstr : WSTRING [128];

END_VAR;

rcnum := RECIPE_GETRECORDS (rcstr);

ST_OPTION HANDLE_ERRORS;

ERRNO := 0;

FOR idx := 1 TO rcnum DO

 rname := RECIPE_GETINFO (rcstr, idx);

 IF ERRNO = 0 THEN

 outstr := rname+','+RECIPE_COMMENT+','+ANY_TO_STRING(RECIPE_ID)+','+ANY_TO_STRING(RECIPE_TIME);

 ELSE

 ERRNO := 0;

 END_IF;

END_FOR;

ST_OPTION BLOCKING_ERRORS;

A further example given below (see RECIPE_GETID) might be significant.

 ST-Script Guidelines 1.38

 Page 455 of 562

RECIPE_GETID

Retrieves the ID of a recipe with a given name.

ID = RECIPE_GETID (STRUCTURE, RECIPE)

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the involved recipe

output

ID : UDINT the ID of the recipe;
 this ID is defined as the index (base-1) of the recipe within the archive

example

VAR

 rcstr : WSTRING [64];

 rname1, rname2 : WSTRING [64];

 rcidx : UDINT;

 outstr : WSTRING [128];

END_VAR;

rcstr := 'Recipe1';

rname1 := RECIPE_GETCURNAME (rcstr);

rcidx := RECIPE_GETID (rcstr, rname1);

rname2 := RECIPE_GETINFO (rcstr, rcidx);

outstr := 'name :' + RECIPE_NAME; // = rname1, = rname2

outstr := 'comment :' + RECIPE_COMMENT;

outstr := 'id :' + ANY_TO_STRING (RECIPE_ID);

outstr := 'time :' + ANY_TO_STRING (RECIPE_TIME);

 ST-Script Guidelines 1.38

 Page 456 of 562

RECIPE_GETFIELDSNUMBER

Retrieves the number of custom fields configured in a recipe structure (system fields such as name, comment,
time and ID are excluded from the count).

FIELDS = RECIPE_GETFIELDSNUMBER (STRUCTURE)

input

STRUCTURE : ANY_STRING the name of the involved structure

output

FIELDS : UDINT the number of custom fields

 ST-Script Guidelines 1.38

 Page 457 of 562

RECIPE_GETFIELDNAME

Retrieves the name of one of the fields of a recipe structure.
Similarly to the functions RECIPE_COMPAREFIELD and RECIPE_GETCOMPAREINDEX (see the related detailed
descriptions), the recipe field can be identified by one of several different information:
- by its index (the field positional index in the recipe structure);
- by the ID of its device tag (possible only for fields that actually have one);
- by an address match between its associated device tag and a further given tag (meant to be used to match

addresses with variable/variant tags, or in cases where different tags share the same address and the ID of
the actual device tag is not known).

NAME = RECIPE_GETFIELDNAME (STRUCTURE, FIELD [, MODE])

input

STRUCTURE : ANY_STRING the name of the involved structure
FIELD : ANY_INT a variable information used to identify the field;

the meaning and type of this parameter depends on the value given to the
(optional) 3rd parameter (see below); the possibilities are:

- MODE = RECIPEBYINDEX (also the default, in case an explicit MODE is missing)
FIELD type = ANY_INT
this FIELD parameter is the index (base-0) of the recipe field within the
recipe structure;
can range between 0 and RECIPE_GETFIELDSNUMBER - 1
this mode can only be used with custom fields, never with system fields

- MODE = RECIPEBYTAGID
FIELD type = UDINT
this FIELD parameter is the ID of the device tag associated to the recipe
field;
the given ID is expected to be a valid tag ID for the current project;
this mode can only be used with fields that actually have a device tag
association (all the custom fields and only the system fields with an explicit
device association)
[ RECIPE_GETFIELDNAMEDTAG]

- MODE = RECIPEBYTAGADD
FIELD type = UDINT
this FIELD parameter is the ID of a tag to be used for an address comparison
(the field is chosen if the address of its device tag is the same as the
address of the tag given here);
the given ID is expected to be a valid tag ID for the current project;
it is usually (not necessarily) the ID of a variable/variant tag;
this mode can only be used with fields that actually have a device tag
association (all the custom fields and only the system fields with an explicit
device association)
[ RECIPE_GETFIELDNAMEDADD]

MODE : ANY_INT [OPTIONAL] an identifier code defining the nature of the information given in
the 2nd parameter, to be used to identify the recipe field (see
above); the supported codes are:
0 (RECIPEBYINDEX) the field is identified by its index (this is the

default as well: omitting this parameter means the field is
identified by its index)

1 (RECIPEBYTAGID) the field is identified by the ID of its device tag
(only possible for fields with a device tag)

2 (RECIPEBYTAGADD) the field is identified by the address of its
device tag (only possible for fields with a device tag)

 ST-Script Guidelines 1.38

 Page 458 of 562

if missing, the default behaviour is RECIPEBYINDEX

output

NAME : WSTRING name of the requested field;
note that if the selected field is one of the 4 system fields, this function
could even return one of the supported system names:
- RECIPENAME ("RecipeName")
- RECIPEID ("RecipeId")
- RECIPECOMMENT ("Comment")
- RECIPETIME ("ChangeTime")

As also explained in the description of the functions RECIPE_COMPAREFIELD and RECIPE_GETCOMPAREINDEX, to further
explain the behaviour of the function in case of RECIPEBYTAGADD mode:
the returned field is the one associated to a device tag that has the same address as the current address of the
other (2nd parameter) identified tag;
the given tag can be a variable/variant tag, and is allowed to have a variable address; in this case the tag
address should have been evaluated and assigned before the invocation of this function (that means the tag
should have been read or written at least once before). The last evaluated address is matched against those of
all the device tags associated to recipe fields, until a suitable correspondence is found.

example

VAR

 FieldsNumber : UDINT;

 FieldName : WSTRING [128];

 idx : UDINT;

END_VAR;

FieldsNumber := RECIPE_GETFIELDSNUMBER ("Recipe1");

FOR idx := 0 TO FieldsNumber-1 DO

 FieldName := RECIPE_GETFIELDNAME ("Recipe1", idx);

 _TRACE (ANY_TO_WSTRING(idx) + ") " + FieldName);

END_FOR;

example

// Setting a difference bit in a flags array (usage example for recipes comparison)

// 2. comprehensive mode: based on the address match of a field’s tag

// Environment constants

VAR CONSTANT

 _STRNAME : WSTRING [100] := "Recipe1";

 _RECNAME : WSTRING [100] := "a";

 _TAGDIFF : WSTRING [100] := "Tag_DIFF";

END_VAR;

// Execute the field value comparison (archive/device)

FUNCTION CompareField

 VAR_INPUT

 tagid : UDINT; // - tag ID given in input

 END_VAR;

 VAR

 fieldname : WSTRING [256];

 different : BOOL;

 END_VAR;

 fieldname := RECIPE_GETFIELDNAME (_STRNAME, tagid, RECIPEBYTAGADD); // - identify the recipe field

 different := (RECIPE_GETFIELDVALUE (_STRNAME, _RECNAME, fieldname) <> // - compare archive value

 TAG_READVALUE (TAG_GETNAME (tagid))); // and device tag

 SetDiffResult (fieldname, different); // - apply comparison result

 ST-Script Guidelines 1.38

 Page 459 of 562

END_FUNCTION;

// Set up the proper flags, given a field state

FUNCTION SetDiffResult

 VAR_INPUT

 fieldname : WSTRING [256]; // - recipe field name

 different : BOOL; // - difference flag

 END_VAR;

 VAR

 index : UDINT;

 flags : ARRAY [256] OF BOOL;

 END_VAR;

 // Find field index

 IF (fieldname = RECIPENAME) THEN

 index := RECIPECOMPNAME; // - fixed index for name field

 ELSIF (fieldname = RECIPECOMMENT) THEN

 index := RECIPECOMPCOMMENT; // - fixed index for comment field

 ELSE

 index := RECIPECOMPCUSTOM + RECIPE_GETFIELDINDEX (_STRNAME, fieldname); // - custom field index

 END_IF;

 // Set field flag

 TAG_WRITEELEMENT (_TAGDIFF, index, different); // - store flag in tag array

 // Set global flag

 IF (different) THEN

 TAG_WRITEELEMENT (_TAGDIFF, 0, TRUE);

 ELSE

 ST_OPTION LAX_TYPES;

 flags := TAG_GETVALUE (_TAGDIFF);

 ST_OPTION STRICT_TYPES;

 FOR index := 1 TO RECIPE_GETFIELDSNUMBER(_STRNAME)+2 DO

 IF (flags[index]) THEN

 different := TRUE;

 exit;

 END_IF;

 END_FOR;

 TAG_WRITEELEMENT (_TAGDIFF, RECIPECOMPGENERAL, different);

 END_IF;

END_FUNCTION;

 ST-Script Guidelines 1.38

 Page 460 of 562

RECIPE_GETFIELDINDEX

Retrieves the index (base-0) of a given custom recipe field.

INDEX = RECIPE_GETFIELDINDEX (STRUCTURE, FIELD)

input

STRUCTURE : ANY_STRING the name of the involved structure
FIELD : ANY_STRING the name of the requested field;
 expected to be the name of one of the custom fields of the given structure

(system fields such as recipe name, comment, ID and time are excluded)

output

INDEX : UDINT the index (base-0) of the needed field
 can range between 0 and RECIPE_GETFIELDSNUMBER - 1

example

// Setting a difference bit in a flags array (usage example for recipes comparison)

// 1. basic mode: based on the positional index of a recipe field

// (needs knowledge of field name, value and type)

FUNCTION CompareFieldNumeric // Execute the (numeric) comparison

 VAR_INPUT

 fieldname : WSTRING [256]; // - recipe field name

 fieldvalue : UINT; // - recipe field new value

 END_VAR;

 VAR

 archivevalue : UINT;

 different : BOOL;

 END_VAR;

 archivevalue := RECIPE_GETFIELDVALUE ("Recipe1", "a", fieldname); // - get old value from archive

 different := (archivevalue <> fieldvalue); // - check new/old values difference

 SetDiffResult (fieldname, different); // - set up the comparison reult

END_FUNCTION;

FUNCTION SetDiffResult // Set the proper flag

 VAR_INPUT

 fieldname : WSTRING [256]; // - recipe field name

 different : BOOL; // - difference flag

 END_VAR;

 VAR

 index : UDINT;

 END_VAR;

 IF (fieldname = RECIPENAME) THEN

 index := RECIPECOMPNAME; // - fixed index for name field

 ELSIF (fieldname = RECIPECOMMENT) THEN

 index := RECIPECOMPCOMMENT; // - fixed index for comment field

 ELSE

 index := RECIPECOMPGENERAL + RECIPE_GETFIELDINDEX ("Recipe1", fieldname); // - custom field index

 END_IF;

 _TRACE (fieldname + "(“ + ANY_TO_STRING(index) + ”) : " + SEL (different, "Equal", "Different "));

 TAG_WRITEELEMENT ("Tag_DIFF", index, different); // - store flag in tag array

END_FUNCTION;

 ST-Script Guidelines 1.38

 Page 461 of 562

RECIPE_GETCOMPAREINDEX

Retrieves the index of a recipe comparison flag.
The retrieved index is referred to the element of the comparison array prepared by a RECIPE_COMPARESET (or
equivalent), associated to the specified recipe field.
Similarly to the functions RECIPE_COMPAREFIELD and RECIPE_GETFIELDNAME (see the related detailed descriptions),
the recipe field can be identified by one of several different information:
- by its name (as configured in the project);
- by its index (the field positional index in the recipe structure);
- by the ID of its device tag (possible only for fields that actually have one);
- by an address match between its associated device tag and a further given tag (meant to be used to match

addresses with variable/variant tags, or in cases where different tags share the same address and the ID of
the actual device tag is not known).

In few words, this is the function to use when the script needs to know the element of the comparison array
where is stored the flag of a specific recipe field.

INDEX = RECIPE_GETCOMPAREINDEX (STRUCTURE, FIELD [, MODE])

input

STRUCTURE : ANY_STRING the name of the involved recipe structure
FIELD : ANY a variable information used to identify the field;

the meaning and type of this parameter depends on the value given to the
(optional) 3rd parameter (see below); the possibilities are:

- MODE = RECIPEBYINDEX
FIELD type = ANY_INT
this FIELD parameter is the index (base-0) of the recipe field within the
recipe structure;
can range between 0 and RECIPE_GETFIELDSNUMBER - 1
this mode can only be used with custom fields, never with system fields

- MODE = RECIPEBYTAGID
FIELD type = UDINT
this FIELD parameter is the ID of the device tag associated to the recipe
field;
the given ID is expected to be a valid tag ID for the current project;
this mode can only be used with fields that actually have a device tag
association (all the custom fields and only the system fields with an explicit
device association)

- MODE = RECIPEBYTAGADD
FIELD type = UDINT
this FIELD parameter is the ID of a tag to be used for an address comparison
(the field is chosen if the address of its device tag is the same as the
address of the tag given here);
the given ID is expected to be a valid tag ID for the current project;
it is usually (not necessarily) the ID of a variable/variant tag;
this mode can only be used with fields that actually have a device tag
association (all the custom fields and only the system fields with an explicit
device association)

- MODE = RECIPEBYNAME (also the default, in case an explicit MODE is missing)
FIELD type = ANY_STRING
this FIELD parameter is the name of the recipe field (the static name
configured in the project);
this mode can be used with either custom or system fields; in case of
system fields names, the supported ones are:
- RECIPEGENERAL ("RecipeGeneral", for the overall comparison flag)

 ST-Script Guidelines 1.38

 Page 462 of 562

- RECIPENAME ("RecipeName")
- RECIPECOMMENT ("Comment")

MODE : ANY_INT [OPTIONAL] an identifier code defining the nature of the information given in
the 2nd parameter, to be used to identify the recipe field (see
above); the supported codes are:
0 (RECIPEBYINDEX) the field is identified by its index (base-0, relative

to the recipe custom fields)
1 (RECIPEBYTAGID) the field is identified by the ID of its device tag

(only possible for fields with a device tag)
2 (RECIPEBYTAGADD) the field is identified by the address of its

device tag (only possible for fields with a device tag)
3 (RECIPEBYNAME) the field is identified by its name (this is the

default as well: omitting this parameter means the field is
identified by its preconfigured static name)

if missing, the default behaviour is RECIPEBYNAME

output

INDEX : UDINT index of the array element containing the requested field flag;
if the selected field is one of the 3 supported system elements, the returned
indexes should be:
- RECIPEGENERAL ("RecipeGeneral")  0
- RECIPENAME ("RecipeName")  1
- RECIPECOMMENT ("Comment")  2
custom fields should have flags starting from index 3

To better handle the indexes of system and custom elements, the programmer can use the following reserved
symbolics as numeric constants:
RECIPECOMPGENERAL : 0 (the index of the general flag)
RECIPECOMPNAME : 1 (the index of the recipe name flag)
RECIPECOMPCOMMENT : 2 (the index of the recipe comment flag)
RECIPECOMPCUSTOM : 3 (the index of the first custom field flag)

As also explained in the description of the functions RECIPE_COMPAREFIELD and RECIPE_GETFIELDNAME, to further
explain the behaviour of the function in case of RECIPEBYTAGADD mode:
the identified field is the one associated to a device tag that has the same address as the current address of the
other (2nd parameter) identified tag;
the given tag can be a variable/variant tag, and is allowed to have a variable address; in this case the tag
address should have been evaluated and assigned before the invocation of this function (that means the tag
should have been read or written at least once before). The last evaluated address is matched against those of
all the device tags associated to recipe fields, until a suitable correspondence is found.

example

// Setting a difference bit in a flags array (usage example for recipes comparison)

// 3. comprehensive mode: based on the address match of a field’s tag (with flag index identification)

// Environment constants

VAR CONSTANT

 _STRNAME : WSTRING [100] := "Recipe1";

 _RECNAME : WSTRING [100] := "a";

 _TAGDIFF : WSTRING [100] := "Tag_DIFF";

END_VAR;

// Execute the field value comparison (archive/device)

FUNCTION CompareField

 VAR_INPUT

 ST-Script Guidelines 1.38

 Page 463 of 562

 tagid : UDINT; // - tag ID given in input

 END_VAR;

 VAR

 fieldname : WSTRING [256];

 different : BOOL;

 END_VAR;

 fieldname := RECIPE_GETFIELDNAME (_STRNAME, tagid, RECIPEBYTAGADD); // - identify the recipe field

 different := (RECIPE_GETFIELDVALUE (_STRNAME, _RECNAME, fieldname) <> // - compare archive value

 TAG_READVALUE (TAG_GETNAME (tagid))); // and device tag

 SetDiffResult (fieldname, different); // - apply comparison result

END_FUNCTION;

// Set up the proper flags, given a field state

FUNCTION SetDiffResult

 VAR_INPUT

 fieldname : WSTRING [256]; // - recipe field name

 different : BOOL; // - difference flag

 END_VAR;

 VAR

 index : UDINT;

 flags : ARRAY [256] OF BOOL;

 END_VAR;

 // Find field index

 index := RECIPE_GETCOMPAREINDEX (_STRNAME, fieldname, RECIPEBYNAME); // - find field index

 // Set field flag

 TAG_WRITEELEMENT (_TAGDIFF, index, different); // - store flag in tag array

 // Set global flag

 IF (different) THEN

 TAG_WRITEELEMENT (_TAGDIFF, 0, TRUE);

 ELSE

 ST_OPTION LAX_TYPES;

 flags := TAG_GETVALUE (_TAGDIFF);

 ST_OPTION STRICT_TYPES;

 FOR index := 1 TO (RECIPE_GETFIELDSNUMBER(_STRNAME) + RECIPECOMPCUSTOM - 1) DO

 IF (flags[index]) THEN

 different := TRUE;

 exit;

 END_IF;

 END_FOR;

 TAG_WRITEELEMENT (_TAGDIFF, RECIPECOMPGENERAL, different);

 END_IF;

END_FUNCTION;

 ST-Script Guidelines 1.38

 Page 464 of 562

RECIPE_GETFIELDVALUE

Retrieves from the archive the value of a field of a given recipe.

VALUE = RECIPE_GETFIELDVALUE (STRUCTURE, RECIPE, FIELD)

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the involved recipe
FIELD : ANY_STRING the name of the involved field;
 this could be either:
 - the user-defined name of any structure field
 - "RecipeName" (or RECIPENAME)
 - "RecipeId" (or RECIPEID)
 - "Comment" (or RECIPECOMMENT)
 - "ChangeDate" or "ChangeTime" (or RECIPETIME)

output

VALUE : ANY the value, retrieved from the archive, of the identified recipe field;
 the type of the returned value will match that of the configured field;
 in case of one of the special fields, the expected return type is:
 RECIPENAME : WSTRING
 RECIPEID : UDINT
 RECIPECOMMENT : WSTRING
 RECIPETIME : LDT

This function is used to access single pieces of a recipe directly from the archive, without affecting the current
content of the recipe buffer.

 ST-Script Guidelines 1.38

 Page 465 of 562

RECIPE_SETFIELDVALUE

Writes in the archive the value of a field of a given recipe.

RECIPE_SETFIELDVALUE (STRUCTURE, RECIPE, FIELD, VALUE)

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY_STRING the name of the involved recipe
FIELD : ANY_STRING the name of the involved field;
 this could be either:
 - the user-defined name of any structure field
 - "Comment" (or RECIPECOMMENT)
 - "ChangeDate" or "ChangeTime" (or RECIPETIME)
 note that Name and ID of a recipe already in archive can’t be changed by

simply accessing the information (these are system information only
affected by specific recipe-wide operations, such as whole recipes saving,
renaming, and archive packing operations)

VALUE : ANY the new value of the identified recipe field, to be written in the archive;
 the type of the given value must match that of the configured field;
 in case of one of the special fields, the expected value type is:
 RECIPECOMMENT : WSTRING
 RECIPETIME : LDT

This function is used to access single pieces of a recipe directly in the archive, without the need to affect the
current content of the recipe buffer.

Note that the submitted changes are directly and silently applied to the content of the interested recipe
archive, no automatic reload of tags , buffers or client pages is implied by this operation.

 ST-Script Guidelines 1.38

 Page 466 of 562

RECIPE_SETFIELDEXPORT

Set the export format of specific recipe fields.

RECIPE_SETFIELDEXPORT (STRUCTURE, FIELD, FORMAT)

input

STRUCTURE : ANY_STRING the name of the involved structure
FIELD : ANY_STRING the name of the recipe field that has to be redefined;
 this parameter is expected to identify one of the custom-defined fields;
 format changes on system fields are not allowed
FORMAT : ANY_STRING an identifier of the new format that has to be applied to the field;
 format codes currently supported are:
 - “DT” : can be applied to numeric integer values expected to have

date/time values in DT format (the numeric equivalent is a 32bit integer
value with the number of seconds elapsed since 01/01/1970);

 the export will convert the numeric value in the corresponding date/time
string;

 - “LDT” : can be applied to numeric integer values expected to have
date/time values in LDT format (the numeric equivalent is a 64bit integer
value with the number of 100-nanoseconds elapsed since 01/01/1601);

 the export will convert the numeric value in the corresponding date/time
string;

 - “DT_m” : is a custom format that can be applied to numeric integer values
expected to have date/time values expressed in «milliseconds elapsed
since 01/01/1970-00:00:00»;

 the export will convert the numeric value in the corresponding date/time
string;

 - “.##” : a dot followed by numeric digits is used to specify the number of
decimal digits to be used with floating point values;

 only values in the range 0..99 are allowed
 - “” : an empty string is used as a special directive meant to reset the field

format to its default

This function is used to change the format of given recipe fields when exported in a file.
The selection will have effect on both ‘ESA’ and ‘flat’ export formats.

Note that the format redefinition applied by this function has only effect on exports toward files, not on
exports on database, since the format of database columns can’t be freely changed at runtime.
Also note that files exported using redefined formats might no longer be compatible for imports (or might lead
to unexpected values), if the change goes against the fields basic nature. For example, forcing only fields
decimals precisions won’t affect compatibility for imports, while changing a numeric value in a date/time string
will.

Remember that it is possible to reset the format to the field default simply passing an empty FORMAT string to
this function.

 ST-Script Guidelines 1.38

 Page 467 of 562

RECIPE_GETSTRRECORD

Retrieves a recipe record from the archive.

RECORD = RECIPE_GETSTRRECORD (STRUCTURE, RECIPE, TYPE)

input

STRUCTURE : ANY_STRING the name of the involved structure
RECIPE : ANY the recipe to be retrieved;
 - if given as a string (ANY_STRING), it must be the name of the needed

recipe;
 - if given as a numeric value (ANY_INT), it must be the ID (base-1 index) of

the recipe; can be in the range between 1 and RECIPE_GETRECORDS; check the
function result (in HANDLE_ERRORS mode), or the returned recipe name, to
see whether the given parameter identified a valid recipe

TYPE : ANY_STRING the name of a user-defined structured type, resembling the layout of the
structure of the recipe (note that only structures are allowed);

 this can be a type manually prepared by the ST programmer, or - ideally -
automatically predefined in the system ST section by the configurator
compiler

output

RECORD : ANY the returned value assumes the (structured) type with the name given in the
parameter TYPE;

 this structure fields are filled up with the values of the fields of the identified
recipe, as currently stored in the archive

The function is meant to return a whole recipe record acquired from the archive.

The ST programmer (or the compilation framework) must have created a user-defined (structured) type
resembling the layout of the recipe structure. This type must be specified to the function, and is used to give
form to the returned value.
The given user-defined type structure, and the recipe structure, are not required to be perfectly identical. In
fact, this function could be used to retrieve even a subset of recipe fields, if a properly defined destination
structured type is provided.

Assignment rules:
- assignments are done field by field;
- fields match is done by name;
 the names in the ST structure should match the names of the recipe items;

custom items have their own user-defined names, while the system fields are expected to have the following
conventional names:
. “RecId” (the recipe ID, should be a UDINT),
. “RecName” (the recipe name, should be a WSTRING[32]),
. “RecTime” (the last change time, should be an LDT, even though natively stored as a plain ‘ulong’),
. “RecComment” (the recipe comment, should be a WSTRING[100]);

- fields that exist in the source recipe record (as defined in the recipe structure), but not in the destination ST
value (as defined in the ST user-defined type), are ignored;

- fields that exist in the destination ST value, but not in the source recipe record, are explicitly reset in the
destination;

- where the names match is verified, the fields types are required to match as well; perfection is not required,
but checks are strict:
. integers can only be assigned to integers (or pseudo-integers) of the same size

(pseudo-integers definition includes integers, ranges, enumeratives, bitstrings, booleans, date/time),

 ST-Script Guidelines 1.38

 Page 468 of 562

. reals can only be assigned to reals of the same size,

. strings can only be assigned to strings of the same size and type,

. arrays can only be assigned to arrays of the same size and with elements following the rules above,

. sub-structures and arrays of sub-structures (meaning fields of structured type) are transferred as binary
values; they are required to perfectly match in definition (or at least to match the rules above field by field,
so that the overall binary layout of the two parts is identical).

 ST-Script Guidelines 1.38

 Page 469 of 562

RECIPE_GETSTRRECORDS

Retrieves a set of recipe records from the archive.

RECORDS = RECIPE_GETSTRRECORDS (STRUCTURE, TYPE, SIZE, PAGE [, FROM, TO])

input

STRUCTURE : ANY_STRING the name of the involved structure
TYPE : ANY_STRING the name of a user-defined structured type, resembling the layout of the

structure of the recipe (note that only structures are allowed);
 this can be a type manually prepared by the ST programmer, or - ideally -

automatically predefined in the system ST section by the configurator
compiler

SIZE : ANY_INT maximum number of recipes returned by the function (and number of
elements of the returned array of structures)

PAGE : ANY_INT in case too many recipe records match the request, and only a part of them
can be returned (SIZE), this parameter can be used to choose which of them
are required (the 1st N, or the 2nd N, etc.);

 the 1st set of SIZE records is PAGE 1
FROM : LDT [OPTIONAL] the timestamp of the first (oldest) recipe to be retrieved;

if all records are needed and no timestamp range is required, this
parameter can be omitted, or explicitly given as ANY_TO_LDT (0)

TO : LDT [OPTIONAL] the timestamp of the last (newest) recipe to be retrieved
if all records are needed and no timestamp range is required, this
parameter can be omitted, or explicitly given as ANY_TO_LDT (-1)

output

RECORDS : ANY an array of structures, meant to contain the retrieved recipes data;
 the returned array elements assume the (structured) type with the name

given in the parameter TYPE; the array will have exactly the size (number of
elements) specified in the SIZE parameter, even if less recipes were found
(extra elements will have empty values);

 the elements structure fields are filled up with the values of the fields of the
identified recipes, as currently stored in the archive

The function is meant to return a set of recipe records acquired from the archive.

The ST programmer (or the compilation framework) must have created a user-defined (structured) type
resembling the layout of the recipe structure. This type must be specified to the function, and is used to give
form to the returned value.
The given user-defined type structure, and the recipe structure, are not required to be perfectly identical. In
fact, this function could be used to retrieve even a subset of recipe fields, if a properly defined destination
structured type is provided.

See the specifications of the RECIPE_GETSTRRECORD function above for a description of the structures assignments
rules.

 ST-Script Guidelines 1.38

 Page 470 of 562

RECIPE_GETTAGNAME

Retrieves the name of the tag associated to a specific structure field.

TAG = RECIPE_GETTAGNAME (STRUCTURE, FIELD, DEVICE)

input

STRUCTURE : ANY_STRING the name of the involved structure
FIELD : ANY_STRING the name of the involved field;
 this could be either:
 - the user-defined name of any structure field
 - "RecipeName" (or RECIPENAME)
 - "RecipeId" (or RECIPEID)
 - "Comment" (or RECIPECOMMENT)
 - "ChangeDate" or "ChangeTime" (or RECIPETIME)
 - "CompareArray" (or RECIPECOMPAREA)
 - "CompareStructure" (or RECIPECOMPARES)
DEVICE : BOOL TRUE to retrieve the device tag name;
 FALSE to retrieve the buffer tag name;

 note that this flag is ignored in case the request is done for the
RECIPECOMPAREA or RECIPECOMPARES elements (not strictly related to recipe
fields, rather to structure-related tags)

output

TAG : WSTRING the name of the tag

example

VAR

 rctndev : WSTRING [64];

 rctnbuf : WSTRING [64];

 rcstr : WSTRING [64];

 rcfld : WSTRING [64];

END_VAR;

rcstr := 'Recipe1';

rctndev := RECIPE_GETTAGNAME (rcstr, RECIPENAME , TRUE);

rctnbuf := RECIPE_GETTAGNAME (rcstr, RECIPENAME , FALSE);

// ... do whatever needed with the tags names

rctndev := RECIPE_GETTAGNAME (rcstr, RECIPEID , TRUE);

rctnbuf := RECIPE_GETTAGNAME (rcstr, RECIPECOMMENT, FALSE);

rctndev := RECIPE_GETTAGNAME (rcstr, RECIPETIME , TRUE);

rcfld := 'RecField1';

rctndev := RECIPE_GETTAGNAME (rcstr, rcfld, TRUE);

rctnbuf := RECIPE_GETTAGNAME (rcstr, rcfld, FALSE);

// ... do whatever needed with the tags names

rcfld := 'RecField2';

rctndev := RECIPE_GETTAGNAME (rcstr, rcfld, TRUE);

rctnbuf := RECIPE_GETTAGNAME (rcstr, rcfld, FALSE);

rcfld := 'RecField3';

rctndev := RECIPE_GETTAGNAME (rcstr, rcfld, TRUE);

rctnbuf := RECIPE_GETTAGNAME (rcstr, rcfld, FALSE);

 ST-Script Guidelines 1.38

 Page 471 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the recipes management:

RECIPE_IMPORTEDNEW type UDINT
 access R

gives the number of imported recipes that were entirely unknown and
added to the archive by a successful execution of RECIPE_IMPORT

RECIPE_IMPORTEDOLD type UDINT
 access R

gives the number of imported recipes that were already known and
replaced in the archive by a successful execution of RECIPE_IMPORT

RECIPE_NAME type WSTRING
 access R

replicates the name of the last recipe retrieved by a successful execution
of RECIPE_INFO (the same name already returned by it)

RECIPE_ID type UDINT
 access R

replicates the ID of the last recipe retrieved by a successful execution of
RECIPE_INFO (the same ID passed as parameter to it)

RECIPE_COMMENT type WSTRING
 access R

gives the comment stored within the last recipe retrieved by a successful
execution of RECIPE_INFO

RECIPE_TIME type LDT
 access R

gives the date and time of the last change/save operation made on the last
recipe retrieved by a successful execution of RECIPE_INFO

 ST-Script Guidelines 1.38

 Page 472 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

RECIPENAME "RecipeName" RECIPE_GETTAGNAME, -_GETFIELDNAME, -_GETFIELDVALUE, …
RECIPEID "RecipeId" RECIPE_GETTAGNAME, -_GETFIELDNAME, -_GETFIELDVALUE
RECIPECOMMENT "Comment" RECIPE_GETTAGNAME, -_GETFIELDNAME, -_GETFIELDVALUE|SET, …
RECIPETIME "ChangeTime" RECIPE_GETTAGNAME, -_GETFIELDNAME, -_GETFIELDVALUE|SET
RECIPECOMPAREA "CompareArray" RECIPE_GETTAGNAME
RECIPECOMPARES "CompareStructure" RECIPE_GETTAGNAME
RECIPEGENERAL "RecipeGeneral" RECIPE_GETCOMPAREINDEX

RECIPEBYINDEX 0 RECIPE_GETCOMPAREINDEX, RECIPE_GETFIELDNAME
RECIPEBYTAGID 1 RECIPE_GETCOMPAREINDEX, RECIPE_GETFIELDNAME
RECIPEBYTAGADD 2 RECIPE_GETCOMPAREINDEX, RECIPE_GETFIELDNAME
RECIPEBYNAME 3 RECIPE_GETCOMPAREINDEX

RECIPECOMPGENERAL 0 RECIPE_GETCOMPAREINDEX
RECIPECOMPNAME 1 RECIPE_GETCOMPAREINDEX
RECIPECOMPCOMMENT 2 RECIPE_GETCOMPAREINDEX
RECIPECOMPCUSTOM 3 RECIPE_GETCOMPAREINDEX

 ST-Script Guidelines 1.38

 Page 473 of 562

15. RUNTIME - SAMPLES

DLOG_ENABLE

Enables the activity of a datalog samples buffer.

DLOG_ENABLE (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

 ST-Script Guidelines 1.38

 Page 474 of 562

DLOG_DISABLE

Disables the activity of a datalog samples buffer.

DLOG_DISABLE (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

 ST-Script Guidelines 1.38

 Page 475 of 562

DLOG_RESETSAMPLES

Cleans up the content of a datalog samples buffer.

DLOG_RESETSAMPLES (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

After the call, the datalog buffer will result completely empty.

 ST-Script Guidelines 1.38

 Page 476 of 562

DLOG_ACQUIRESAMPLES

Starts the acquisition of a set of samples of a datalog buffer.

DLOG_ACQUIRESAMPLES (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

The acquisition will affect all the sources included in the datalog buffer.
Note that in case of sources based on tag-arrays, a single acquisition request will cause the creation of several
samples contemporarily: one for each element of the acquired arrays.

The acquisition operation involves communication with external devices and is treated asynchronously; this
function only triggers the start of the operation.
It is not possible to request acquisitions for a buffer if there is already another acquisition in progress (for the
same buffer); remember though that if not configured properly, different buffers may fall in the same
optimized acquisition group and this sort of acquisition 'busy' state will affect all of them contemporarily.

To minimize potential programming issues arising from the asynchronous behaviour of the acquisitions, a
couple of utility functions are available to handle their states; see DLOG_ACQUISITIONBUSY and
DLOG_ACQUISITIONWAIT.

example

VAR

 dlname : STRING [32];

 dlnum : UDINT;

 dlidx : UDINT;

END_VAR;

dlname := 'DataLog1';

FOR dlidx := 1 TO 100 DO

 DLOG_ACQUIRESAMPLES (dlname); // start the acquisition process

 dlnum := DLOG_GETNUMSAMPLES (dlname); // here the samples counter is still unchanged

 // Waiting mode 1: plain SLEEPs are not efficient at all

 // SLEEP (50);

 // Waiting mode 2: the BUSY flag allows even to handle waiting mechanics

 // WHILE DLOG_ACQUISITIONBUSY (dlname) DO

 // SLEEP (1);

 // END_WHILE;

 // Waiting mode 3: the most efficient way to wait

 DLOG_ACQUISITIONWAIT (dlname);

 dlnum := DLOG_GETNUMSAMPLES (dlname); // here the samples counter is finally updated

END_FOR;

 ST-Script Guidelines 1.38

 Page 477 of 562

DLOG_ACQUISITIONBUSY

Checks whether a samples acquisition is in progress for a given datalog.

STATE = DLOG_ACQUISITIONBUSY (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

output

STATE : BOOL TRUE if there is an acquisition in progress;
 FALSE otherwise

See DLOG_ACQUIRESAMPLES for notes and usage examples.

 ST-Script Guidelines 1.38

 Page 478 of 562

DLOG_ACQUISITIONWAIT

Waits for a samples acquisition to complete for a given datalog.

STATE = DLOG_ACQUISITIONWAIT (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

output

STATE : BOOL TRUE if an acquisition in progress had actually to be waited for;
 FALSE if there was nothing to wait for

This function allows the script to wait for the whole duration of an ongoing acquisition. While the script is
waiting no other script can be executed, but further predefined functions could happen and the terminal would
not feel blocked.
Nothing happens - not even errors notifications - if there is no acquisition currently in progress; see the
returned state.

See DLOG_ACQUIRESAMPLES for notes and usage examples.

 ST-Script Guidelines 1.38

 Page 479 of 562

DLOG_APPENDSAMPLES

Appends a new set of samples to the bottom of the buffers of the sources of a datalog.

DLOG_APPENDSAMPLES (DLOG, VALUE1 [, VALUE2 [, …]])

input

DLOG : ANY_STRING the name of the datalog buffer
VALUE# : ANY_ELEMENTARY a list of parameters containing the values of the new samples;

in this list of values there MUST be exactly a value for each source of the
datalog;
the values MUST be given in the same number, order and types of the
configured sources;
currently, up to 15 values can be given, being 16 the maximum number of
parameters for a script function; this means that datalogs with more than
15 sources can't be used with this function;
most of the plain numeric types are acceptable for samples of numeric
sources (basically, everything except strings, dates and times; values are
ultimately converted in LREAL);
string values are acceptable for samples of string sources

Programmers should be careful not to mess with buffers that are being changed by automatic system activities:
adding custom samples to the buffers can lead to incoherent datalogs if not done properly.
The usage of this directive is recommended only with datalogs in manual mode, while no further acquisition
from devices is in progress.

When appended, the current date and time is used as timestamp for the samples.

The given samples must be coherent with the configuration of the referenced datalog:
when part of a datalog, all the sources MUST share the same size, the same number of samples, all with
corresponding timestamps; for this reason, appending samples to a single source is not allowed: samples for all
the datalog sources must be given contemporarily, to ensure a continuous validity of the buffers;
the programmer must be sure to pass to the function the correct number of samples in the correct order (the
parameters must match the number and order of the configured sources);
also the types of the values matter: the values types must match the type of the sources; any plain numeric
value is acceptable for numeric sources, and any string is acceptable for string sources.

 ST-Script Guidelines 1.38

 Page 480 of 562

DLOG_FLUSH

Flushes on persistent storage the samples collected for a datalog buffer.

DLOG_FLUSH ([DLOG])

input

DLOG : ANY_STRING [OPTIONAL] the name of the datalog buffer;
if no name is given, then ALL the datalogs buffers are flushed

The operation only makes sense for datalogs that are configured to be persistent.
It is also actually executed only if there are samples still not flushed: finalization of samples on persistent
storage is already done automatically every 5 minutes and every time the number of bufferized samples
exceeds the count of 100.

 ST-Script Guidelines 1.38

 Page 481 of 562

DLOG_EXPORT

Starts an export on file of the samples stored in a datalog buffer.

DLOG_EXPORT (FILE, DLOG [, FROM [, TO]])

input

FILE : ANY_STRING path and name of the exported file
DLOG : ANY_STRING the name of the datalog buffer
FROM : LDT [OPTIONAL] in case of limited time range, the initial timestamp of the needed

interval; if given, only the samples with times from this parameter
onward will be included in the export

TO : LDT [OPTIONAL] in case of limited time range, the final timestamp of the needed
interval; if given, only the samples with times up to this parameter
will be included in the export

Multiple exports can't be executed contemporarily: using this function while another export is in progress will
result in an error.

All the datalogs exports are executed asynchronously, regardless the context that started the operation (script,
predefined function, grid menu, etc.); not even this function is blocking for the script, and only acts as a trigger
for the operation.

Being the exports asynchronous, it is possible to have functions and script executing operations while an export
is in progress.
Therefore few more functions are available to handle this asynchronicity: see DLOG_EXPORTTERMINATE,
DLOG_EXPORTWAIT, DLOG_EXPORTBUSY.

example

VAR

 dlbusy : BOOL;

 dlname : STRING [32];

END_VAR;

dlname := 'DataLog1';

dlbusy := DLOG_EXPORTBUSY (dlname); // FALSE (start in a free state)

dlbusy := DLOG_EXPORTWAIT (dlname); // FALSE (there is nothing to wait)

DLOG_EXPORT ('d:\dl2.txt', dlname);

dlbusy := DLOG_EXPORTBUSY (dlname); // TRUE (export just started)

// DLOG_EXPORT ('d:\dl2.txt', dlname); // > can't request another export while the buffer is busy

// DLOG_EXPORTTERMINATE (dlname); // (termination might be a solution…)

dlbusy := DLOG_EXPORTWAIT (dlname); // TRUE (an export in progress has actually been waited)

dlbusy := DLOG_EXPORTBUSY (dlname); // FALSE (export now completed)

DLOG_EXPORT ('d:\dl2.txt', dlname); // > it's possible to request another operation

 ST-Script Guidelines 1.38

 Page 482 of 562

DLOG_PRINT

Starts the printing of the samples stored in a datalog buffer.

DLOG_PRINT (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

Multiple prints and exports can't be executed contemporarily: using this function while another export or
another print is in progress will result in an error.

Just like the DLOG_EXPORT, even this function works asynchronously: this function only acts as a trigger for the
operation.

From every point of view, the print is considered a sort of 'export on paper', and with the export it doesn't only
share the mechanics, but even the asynchronicity tools functions: see DLOG_EXPORTTERMINATE, DLOG_EXPORTWAIT,
DLOG_EXPORTBUSY.

 ST-Script Guidelines 1.38

 Page 483 of 562

DLOG_EXPORTBUSY

Checks whether a datalog buffer export (or print) is currently in progress.

STATE = DLOG_EXPORTBUSY ([DLOG])

input

DLOG : ANY_STRING [OPTIONAL] the name of the datalog buffer
if no name is given, then the check is done on ALL the datalogs

output

STATE : BOOL TRUE if there is an export/print in progress;
 FALSE otherwise

The check is applied indiscriminately on exports and on prints in progress.

See DLOG_EXPORT for notes and examples about the management of the exports asynchronicity.

 ST-Script Guidelines 1.38

 Page 484 of 562

DLOG_EXPORTTERMINATE

Forcefully terminates the execution of an export (or print) in progress.

STATE = DLOG_EXPORTTERMINATE ([DLOG])

input

DLOG : ANY_STRING [OPTIONAL] the name of the datalog buffer;
if no name is given, then exports and prints of ALL the datalogs are
terminated

output

STATE : BOOL TRUE if an export/print in progress was actually terminated;
 FALSE if there was nothing to terminate

The termination acts indiscriminately on exports and on prints in progress.

This function allows the script to terminate the export/print operation (for whatever reason: release the
buffers for a mandatory immediate sampling, terminate all activities before a shutdown, etc.).
Nothing happens - not even errors notifications - if there is no export/print currently in progress; see the
returned state.

See DLOG_EXPORT for notes and examples about the management of the exports asynchronicity.

 ST-Script Guidelines 1.38

 Page 485 of 562

DLOG_EXPORTWAIT

Waits for a datalog buffer export (or print) to complete.

STATE = DLOG_EXPORTWAIT ([DLOG])

input

DLOG : ANY_STRING [OPTIONAL] the name of the datalog buffer
if no name is given, the system waits for exports and prints of ALL the
configured datalogs

output

STATE : BOOL TRUE if an export/print in progress had actually to be waited for;
 FALSE if there was nothing to wait for

The wait acts indiscriminately on exports and on prints in progress.

This function allows the script to wait for the whole duration of an ongoing export/print. While the script is
waiting no other script can be executed, but further predefined functions could happen and the terminal would
not feel blocked.
Nothing happens - not even errors notifications - if there is no export/print currently in progress; see the
returned state.

See DLOG_EXPORT for notes and examples about the management of the exports asynchronicity.

 ST-Script Guidelines 1.38

 Page 486 of 562

DLOG_EXPORTCONFIG

Allows the customization of the list of fields included in exports.

DLOG_EXPORTCONFIG (DLOG, KEYS)

input

DLOG : ANY_STRING the name of the datalog buffer
KEYS : ANY_STRING a string of keys, used to specify the list of fields, along with their order and

format

The configuration is buffer-specific, so each configured datalog can have its own list of fields.

The supported fields and their corresponding keys are:

date D date of samples acquisition

time T time of samples acquisition

value V# value of the sample;
 the ‘V’ must be followed by a sequence of numeric digits (≥ 1) used to specify the index of

the field within the datalog sources collection (≥ 1); for example “V3” is used to include the
value of the third source;

 the field output will be automatically formatted

quality Q# | q# quality flags of the sample;
 the ‘Q’ must be followed by a sequence of numeric digits (≥ 1) used to specify the index of

the field within the datalog sources collection (≥ 1); for example “Q10” is used to include
the quality flags of the 10th source;

 if the given key is an upper case ‘Q’, then the output is formatted as a numeric value; the
value is a bitstring, where each bit has the following meaning:

 bit 0 : the sample’s value is valid (1) or not valid (0)
 bit 1 : the buffer automatic acquisition was enabled (1) or disabled (0)
 bit 2 : the sample is the first acquired after a start (1) or linked to previous acquisition (0)
 bit 3 : the sample is from the first element of an array source (1) or not (0)

 if the given key is a lower case ‘q’ instead, then the output is formatted as a readable string
made of the following segments:

 “Start” : if the sample is the first acquired after a start (bit 2 set)
 “Link” : if the sample is part of a linked acquisitions chain (bit 2 reset)
 “Invalid” : if the acquired value caused errors (bit 0 reset)
 “Disabled” : if the sample was acquired while the datalog was disabled (bit 1 reset)
 “FirstElement” : if the sample is from the first element of an array source (bit 3 set)

The following special cases are supported:
- if the given KEYS string is exactly “@Q”, it means all the source qualities in the currently configured keys must

become upper case “Q”s, and be displayed as numeric values;
- if the given KEYS string is exactly “@q”, it means all the source qualities in the currently configured keys must

become lower case “q”s, and be displayed as readable strings.

 ST-Script Guidelines 1.38

 Page 487 of 562

DLOG_ISENABLED

Checks whether the activity of a given datalog is currently enabled.

STATE = DLOG_ISENABLED (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

output

STATE : BOOL TRUE if the datalog buffer activity is currently enabled;
 FALSE if it's disabled

example

VAR

 dlon : BOOL;

END_VAR;

dlon := DLOG_ISENABLED('DataLog1'); // initial state

DLOG_DISABLE ('DataLog1');

dlon := DLOG_ISENABLED('DataLog1'); // definitely FALSE

DLOG_ENABLE ('DataLog1');

dlon := DLOG_ISENABLED('DataLog1'); // definitely TRUE

 ST-Script Guidelines 1.38

 Page 488 of 562

DLOG_GETNUMSAMPLES

Retrieves the number of samples currently stored in a datalog buffer.

NUMBER = DLOG_GETNUMSAMPLES (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

output

STATE : UDINT the number of stored samples

Note that all the sources of a datalog have the same number of samples.

Programmers should be careful when this counter is used as boundary in script loops: the content of the
buffers could be constantly in evolution, so this counter might not be reliable if used on buffers not properly
handled.

 ST-Script Guidelines 1.38

 Page 489 of 562

DLOG_GETSAMPLE

Retrieves the value of a sample stored in a datalog buffer.

VALUE = DLOG_GETSAMPLE (DLOG, SOURCEIDX, SAMPLEIDX)

input

DLOG : ANY_STRING the name of the datalog buffer
SOURCEIDX : ANY_INT the index (base-0) of the needed source
SAMPLEIDX : ANY_INT the index (base-0) of the needed sample

output

VALUE : ANY_ELEMENTARY the value of the SAMPLEIDXth sample currently stored in the buffer of the
SOURCEIDXth source of the given datalog;
the formal result type definition is enough to specify all the possible
values types, but actually the only possible outcomes are:
LREAL for numeric samples
WSTRING for string samples

The programmer is asked to identify:
- the needed datalog, as usual with its name;
- a specific source within the datalog, identified by the index (base-0) of its position in the datalog

configuration;
- a specific sample within the given datalog source buffer, identified by the index (base-0) of its position; the

sample index can range between 0 and the number of samples given by DLOG_GETNUMSAMPLES (-1).

This function directly returns the value of the identified sample, but further information about it can be
retrieved using the following dedicated variables:

DLOG_SAMPLEVALUENUM replicates the numeric value of the sample
DLOG_SAMPLEVALUESTR replicates the string value of the sample
DLOG_SAMPLEISSTRING TRUE if the sample value is a string
DLOG_SAMPLETIME gives the sample timestamp
DLOG_SAMPLEQUALITY gives the sample quality flags

Note that the given variables are meant to retain the values coming from the last successful query invocation;
in case of errors these variables values will remain unchanged.

 ST-Script Guidelines 1.38

 Page 490 of 562

DLOG_GETDISCARDINVALID

Gets the current behaviour model for the samples with invalid quality.

DISCARD = DLOG_GETDISCARDINVALID (DLOG)

input

DLOG : ANY_STRING the name of the datalog buffer

output

DISCARD : BOOL the currently active management model;
 TRUE means that the records containing samples with invalid quality

(generated after communication issues) must be discarded; after a
sampling operation, if the record is discarded, an ‘OnSamplesError’
event is generated; the datalog buffer only contains samples with good
quality;

 FALSE means even samples with invalid quality can be stored in the
buffer; when samples are added to the buffer (even samples with
invalid quality) an ‘OnSamplesSuccess’ event is generated

 ST-Script Guidelines 1.38

 Page 491 of 562

DLOG_SETDISCARDINVALID

Sets a behaviour model for the management of the samples with invalid quality.

DLOG_SETDISCARDINVALID (DLOG, DISCARD)

input

DLOG : ANY_STRING the name of the datalog buffer
DISCARD : BOOL the needed management model;
 TRUE means the records containing samples with invalid quality

(generated after communication issues) must be discarded; after a
sampling operation, if the record is discarded, an ‘OnSamplesError’
event is generated; the datalog buffer only contains samples with good
quality;

 in case a record is discarded because of quality issues, all the samples
of the first valid and accepted one (after a rejection) will be marked
with a discontinuity flag in their quality (DLOGSAMPLESTART), meant to
inform about the discontinuity in the samples collection;

 FALSE means even samples with invalid quality can be stored in the
buffer; when samples are added to the buffer (even samples with
invalid quality) an ‘OnSamplesSuccess’ event is generated;

 this should be the preferred behaviour in case of datalogs containing
multiple sources mapped on different devices, when samples with
good quality coming from a device have to be retained even if in the
same record exist samples with bad quality coming from others

 ST-Script Guidelines 1.38

 Page 492 of 562

example

VAR

 dlname : STRING [32] := 'DataLog1';

 dlidx, dlmax : UDINT;

 dlval : LREAL;

END_VAR;

dlmax := DLOG_GETNUMSAMPLES (dlname) - 1;

// if the source type is known…

FOR dlidx := 0 TO dlmax DO

 dlval := DLOG_GETSAMPLE (dlname, 0, dlidx);

 // LREAL variable is immediately usable if the source is known to be numeric

 // do whatever needed with <dlval> and the DLOG_SAMPLE$ vars

END_FOR;

// if the source type is NOT known…

FOR dlidx := 0 TO dlmax DO

 DLOG_GETSAMPLE (dlname, 0, dlidx);

 IF DLOG_SAMPLEISSTRING THEN

 // use value in DLOG_SAMPLEVALUESTR

 // do whatever needed with the other DLOG_SAMPLE$ vars

 ELSE

 // use value in DLOG_SAMPLEVALUENUM

 // do whatever needed with the other DLOG_SAMPLE$ vars

 END_IF;

END_FOR;

 ST-Script Guidelines 1.38

 Page 493 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the datalogs management:

DLOG_SAMPLEVALUENUM type LREAL
 access R

replicates the value of the last numeric sample successfully retrieved
by a call to DLOG_GETSAMPLE;
reset to 0.0 in case of string values

DLOG_SAMPLEVALUESTR type WSTRING
 access R

replicates the value of the last string sample successfully retrieved by a
call to DLOG_GETSAMPLE;
reset to empty string ('') in case of numeric values

DLOG_SAMPLEISSTRING type BOOL
 access R

states whether the type of the value of the last sample successfully
retrieved by a call to DLOG_GETSAMPLE is a string (TRUE) or a number
(FALSE)

DLOG_SAMPLETIME type LDT
 access R

gives the acquisition timestamp of the last sample successfully
retrieved by a call to DLOG_GETSAMPLE

DLOG_SAMPLEQUALITY type BYTE
 access R

gives the quality flags of the last sample successfully retrieved by a call
to DLOG_GETSAMPLE;
supported flags are:

bit 0 : 1 if the sample is valid
 0 if invalid (sample should be ignored)
 this bitmask constant is defined: DLOGSAMPLEVALID (1)

bit 1 : 1 if the sample was acquired while the datalog was enabled
 0 if it was disabled (sample should be ignored)
 this bitmask constant is defined: DLOGSAMPLEENABLED (2)

bit 2 : 1 if the sample is the start of a new segment
 (as after a startup or after a disable/enable)
 0 if the sample can be "linked" to the previous of its segment
 this bitmask constant is defined: DLOGSAMPLESTART (4)

bit 3 : 1 if the sample comes from the 1st element of an array source
 0 if from other elements or from simple source tags
 this bitmask constant is defined: DLOGSAMPLEFIRST (8)

 ST-Script Guidelines 1.38

 Page 494 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

DLOGSAMPLEVALID 1 DLOG_GETSAMPLE, DLOG_SAMPLEQUALITY
DLOGSAMPLEENABLED 2 DLOG_GETSAMPLE, DLOG_SAMPLEQUALITY
DLOGSAMPLESTART 4 DLOG_GETSAMPLE, DLOG_SAMPLEQUALITY
DLOGSAMPLEFIRST 8 DLOG_GETSAMPLE, DLOG_SAMPLEQUALITY

 ST-Script Guidelines 1.38

 Page 495 of 562

16. RUNTIME - USERS

Basic notes:

Most of the available users functions will rely on the concept of "server user", that is the user currently
considered to be "logged" in the server.

This user is the one considered to be:
- responsible for all the alarm events raised by the server
 (all the alarm events not added by clients, with or without explicit users and stations),
- responsible for the runtime events logged by the FDA auditor
 (all the runtime events not explicitly logged by clients, with or without an explicit responsible subject),
- responsible for the validation of all the users-related requests
 (originated by server-driven events).
This last characteristic in particular is relevant for the scripts' users-related functions: many operations
involving users are allowed only if the responsibility lies on a user with adequate privilege levels. For example, a
user with given priority levels can be created only by users with at least the same levels; or users resets can
only be requested by a user at administration levels.
Therefore, for this kind of operations a responsible user must be identified:
- if the operation is requested by functions or scripts called by a client, then the responsible user is the one

currently logged in that client;
- if the operation is requested by functions or scripts called due to a server event, then the server user is the

responsible actor, and validations are based on its own levels.

By default, the server user is the standard "defaultuser", with the lowest priority levels.
Only clients, under appropriately validated logic, are allowed to enable a different user in the server.

To avoid the spoiling of the users system, the scripts are not allowed to:
- make authentication tests of user/password couples,
- set a new server user,
- browse the database of users and passwords.
The related functionalities are not implemented.

 ST-Script Guidelines 1.38

 Page 496 of 562

USER_ADD

Adds a new user with a given set of properties.

USER_ADD (USER, GROUP, SIGNATURE, PASSWORD, MODE [, VALIDITY [, LANGUAGE [, EMAIL [, PHONE [, RFID]]]]])

input

USER : ANY_STRING name of the user
GROUP : ANY_STRING name of its users group
SIGNATURE : ANY_STRING electronic signature string
PASSWORD : ANY_STRING password string
MODE : ANY_INT the password mode; can be:
 0 (USERPWDALPHA) for alphanumeric passwords
 1 (USERPWDGRAPHIC) for graphic passwords
VALIDITY : ANY_INT [OPTIONAL] number of days of validity of the password;

the password will expire after this duration;
0 (USERPWDNOLIMIT) means the password will never expire;
-1 (USERPWDGLOBALLIMIT) means the global project duration has to
be used;
if missing, the default value is 365 days

LANGUAGE : ANY_INT [OPTIONAL] the code of the user's default language;
0 (USERNOLANGUAGE) : there is no default language; the current
language is preserved when the user logs in;
≥1 : the code is the language ID, defined as the base-1 index of
the language within the project; this language will be
automatically activated when the user logs in;
if missing, the default value is 0 (no language)

EMAIL : ANY_STRING [OPTIONAL] the e-mail address of the user;
will be used by messaging (e-mail) functions for mailing lists;
if missing, the default value is "" (no address available)

PHONE : ANY_STRING [OPTIONAL] the telephone number of the user;
will be used by messaging (SMS) functions for mailing lists;
if missing, the default value is "" (no number available)

RFID : ANY_STRING [OPTIONAL] the RFID alphanumeric code associated to the user's tag;
if missing, or explicitly empty, the RFID is disabled for the user

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (being run in the server, the responsible user is often the current server user):
- the new users can't exceed the levels of the user that is trying to create them.
See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 497 of 562

USER_REMOVE

Removes an existing user.

USER_REMOVE (USER)

input

USER : ANY_STRING name of the user

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (being run in the server, the responsible user is often the current server user):
- addressed users can't exceed the levels of the user that is trying to remove them;
- it is not possible to remove from the system the user currently active, so the USER can't be the server user.
See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 498 of 562

USER_SETPASSWORD

Changes the password of an existing user.

USER_SETPASSWORD (USER, PASSWORD, MODE)

input

USER : ANY_STRING name of the user
PASSWORD : ANY_STRING password string
MODE : ANY_INT the password mode; can be:
 0 (USERPWDALPHA) for alphanumeric passwords
 1 (USERPWDGRAPHIC) for graphic passwords

In case of graphic passwords, the given password string MUST be a WSTRING.
Each character of the string describes a node of the graphic password.
The 16-bits-characters must have the following layout:
- bits 0..3 = Y coordinate of the node (base-0)
- bits 4..7 = X coordinate of the node (base-0)
- bits 8..15 = 0xFF

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (being run in the server, the responsible user is often the current server user):
- referenced users can't exceed the levels of the user that is trying to update them;
- passwords of users imported from an Active Directory can only be changed by the user himself.
See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 499 of 562

USER_SETVALIDITY

Changes the number of days of validity of the password of an existing user.

USER_SETVALIDITY (USER, VALIDITY)

input

USER : ANY_STRING name of the user
VALIDITY : ANY_INT number of days of validity of the password

0 (USERPWDNOLIMIT) means the password will never expire;
-1 (USERPWDGLOBALLIMIT) means the global project duration has to be used

After the given time (if given) the password of the user will expire and will no longer be usable.
Passwords' validity counters reset when:
- the user is created,
- a new password is given for the user,
- a new validity time is given for the password.

 ST-Script Guidelines 1.38

 Page 500 of 562

USER_SETGROUP

Assigns a new group to an existing user.

USER_SETGROUP (USER, GROUP)

input

USER : ANY_STRING name of the user
GROUP : ANY_STRING name of its users group

The group will define the privilege levels of the user.

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (being run in the server, the responsible user is often the current server user):
- referenced users can't exceed the levels of the user that is trying to update them;
- referenced groups can't exceed the levels of the user that is trying to assign them.
See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 501 of 562

USER_SETSIGNATURE

Changes the electronic signature string of an existing user.

USER_SETSIGNATURE (USER, SIGNATURE)

input

USER : ANY_STRING name of the user
SIGNATURE : ANY_STRING the electronic signature of the user

The signature is used when needed in validation and export operations.

 ST-Script Guidelines 1.38

 Page 502 of 562

USER_SETRFID

Changes the RFID code string of an existing user.

USER_SETRFID (USER, RFID)

input

USER : ANY_STRING name of the user
RFID : ANY_STRING the RFID code of the user

The RFID code is used for user authentication in case of logins with RFID tags.

 ST-Script Guidelines 1.38

 Page 503 of 562

USER_SETLANGUAGE

Changes the default language of an existing user.

USER_SETLANGUAGE (USER, LANGUAGE)

input

USER : ANY_STRING name of the user
LANGUAGE : ANY_INT the code of the user's default language;

0 (USERNOLANGUAGE) : there is no default language; the current language is
preserved when the user logs in;
≥1 : the code is a language ID, defined as the base-1 index of the language
within the project; this language will be automatically activated when the
user logs in

If defined, the given language will be automatically activated every time the user logs in.

 ST-Script Guidelines 1.38

 Page 504 of 562

USER_SETEMAIL

Changes the e-mail address of an existing user.

USER_SETEMAIL (USER, EMAIL)

input

USER : ANY_STRING name of the user
EMAIL : ANY_STRING the e-mail address of the user

The address will be used by messaging (e-mail) functions for mailing lists.

 ST-Script Guidelines 1.38

 Page 505 of 562

USER_SETTELNUMBER

Changes the telephone number of an existing user.

USER_SETTELNUMBER (USER, PHONE)

input

USER : ANY_STRING name of the user
PHONE : ANY_STRING the telephone number of the user

The number will be used by messaging (SMS) functions for mailing lists.

 ST-Script Guidelines 1.38

 Page 506 of 562

USER_LOCK

Locks an existing user, making it unable to login.

USER_LOCK (USER)

input

USER : ANY_STRING name of the user

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (the responsible user could be either the current server user or the user logged in the calling client):
- referenced users must have lower levels than the user that is trying to lock them.

Note that users groups can be configured to reject lock requests.
Also groups can be configured to reject UNlock requests; in this last case, lock requests become permanent,
and the affected users will be marked consequently. A permanent lock state can also be forced by an explicit
call to a USER_PERMANENTLOCK function.

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 507 of 562

USER_UNLOCK

Unlocks an existing user, making it able to log in again.

USER_UNLOCK (USER)

input

USER : ANY_STRING name of the user

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (the responsible user could be either the current server user or the user logged in the calling client):
- referenced users must have lower levels than the user that is trying to unlock them.

Note that users groups can be configured to reject unlock requests.
Also note that permanently locked users can't be unlocked.

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 508 of 562

USER_PERMANENTLOCK

Permanently locks an existing user, making it unable to login, and unable to be unlocked.

USER_PERMANENTLOCK (USER)

input

USER : ANY_STRING name of the user

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (the responsible user could be either the current server user or the user logged in the calling client):
- referenced users must have lower levels than the user that is trying to lock them.

Note that users groups can be configured to reject lock requests.

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 509 of 562

USER_JOINLIST

Adds an existing user to a given mailing list.

USER_JOINLIST (USER, LIST, RECIPIENT)

input

USER : ANY_STRING name of the user
LIST : ANY_STRING name of the mailing list
RECIPIENT : ANY_INT recipient type when an e-mail is sent to this user as part of the given mailing

list;
 possible codes are:
 0 (USERTYPENORMAL)
 1 (USERTYPECOPY)
 2 (USERTYPEHIDDEN)

 ST-Script Guidelines 1.38

 Page 510 of 562

USER_LEAVELIST

Removes a user from a given mailing list.

USER_LEAVELIST (USER, LIST)

input

USER : ANY_STRING name of the user
LIST : ANY_STRING name of the mailing list

 ST-Script Guidelines 1.38

 Page 511 of 562

USER_RESETLISTS

Removes a user from all of its mailing lists.

USER_RESETLISTS (USER)

input

USER : ANY_STRING name of the user

 ST-Script Guidelines 1.38

 Page 512 of 562

USER_GETCURRENTNAME

Retrieves the name of the current server user.

NAME = USER_GETCURRENTNAME ()

output

NAME : WSTRING name of the current server user

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 513 of 562

USER_GETCURRENTGROUP

Retrieves the group of the current server user.

GROUP = USER_GETCURRENTGROUP ()

output

GROUP : WSTRING name of the group of the current server user

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 514 of 562

USER_GETCURRENTSHOW

Retrieves the visualization privilege level of the current server user.
This function can be used only in case of level-users (an error would be raised otherwise).

LEVEL = USER_GETCURRENTSHOW ()

output

LEVEL : UDINT visualization privilege level of the current server user

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 515 of 562

USER_GETCURRENTUSE

Retrieves the interaction privilege level of the current server user.
This function can be used only in case of level-users (an error would be raised otherwise).

LEVEL = USER_GETCURRENTUSE ()

output

LEVEL : UDINT interaction privilege level of the current server user

See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 516 of 562

USER_GETGROUP

Retrieves the name of the group of a given user.

GROUP = USER_GETGROUP (USER)

input

USER : ANY_STRING name of the user

output

GROUP : WSTRING name of the group of the given user

 ST-Script Guidelines 1.38

 Page 517 of 562

USER_GETLEVELSHOW

Retrieves the visualization privilege level of a given user.
This function can be used only in case of level-users (an error would be raised otherwise).

LEVEL = USER_GETLEVELSHOW (USER)

input

USER : ANY_STRING name of the user

output

LEVEL : UDINT visualization privilege level of the given user

 ST-Script Guidelines 1.38

 Page 518 of 562

USER_GETLEVELUSE

Retrieves the interaction privilege level of a given user.
This function can be used only in case of level-users (an error would be raised otherwise).

LEVEL = USER_GETLEVELUSE (USER)

input

USER : ANY_STRING name of the user

output

LEVEL : UDINT interaction privilege level of the given user

 ST-Script Guidelines 1.38

 Page 519 of 562

USER_GETLANGUAGE

Retrieves the default language of a given user.

LANGUAGE = USER_GETLANGUAGE (USER)

input

USER : ANY_STRING name of the user

output

LANGUAGE : UDINT ID of the default language of the given user;
 possible result values are:

0 (USERNOLANGUAGE) : the user has no default language;
≥1 : the code is a language ID, defined as the base-1 index of the language
within the project

 ST-Script Guidelines 1.38

 Page 520 of 562

USER_GETEMAIL

Retrieves the e-mail address of a given user.

EMAIL = USER_GETEMAIL (USER)

input

USER : ANY_STRING name of the user

output

EMAIL : WSTRING e-mail address of the given user;
 could be an empty string if no address has been provided

 ST-Script Guidelines 1.38

 Page 521 of 562

USER_GETTELNUMBER

Retrieves the telephone number of a given user.

PHONE = USER_GETTELNUMBER (USER)

input

USER : ANY_STRING name of the user

output

PHONE : STRING telephone number of the given user
 could be an empty string if no number has been provided

 ST-Script Guidelines 1.38

 Page 522 of 562

USER_GETVALIDITY

Retrieves the number of days of validity of the password of a given user.

VALIDITY = USER_GETVALIDITY (USER)

input

USER : ANY_STRING name of the user

output

VALIDITY : UDINT number of days of validity of the password of the given user
0 (USERPWDNOLIMIT) means the password is set not to expire

 ST-Script Guidelines 1.38

 Page 523 of 562

USER_GETCREATION

Retrieves the creation date of the password of a given user.

DATE = USER_GETCREATION (USER)

input

USER : ANY_STRING name of the user

output

DATE : DATE creation date of the password

 ST-Script Guidelines 1.38

 Page 524 of 562

USER_GETEXPIRATION

Retrieves the expiration date of the password of a given user.

DATE = USER_GETEXPIRATION (USER)

input

USER : ANY_STRING name of the user

output

DATE : DATE expiration date of the password

 ST-Script Guidelines 1.38

 Page 525 of 562

USER_ISLOCKED

Checks whether a given user is currently locked.

STATE = USER_ISLOCKED (USER)

input

USER : ANY_STRING name of the user

output

STATE : UDINT the current lock state of the user; can be:
 0 (USERUNLOCKED) means the user is not locked
 1 (USERLOCKED) means the user is locked
 2 (USERPERMANENTLOCK) means the user is permanently locked

 ST-Script Guidelines 1.38

 Page 526 of 562

USER_ISIMPORTED

Checks whether a given user was imported from an Active Directory.

STATE = USER_ISIMPORTED (USER)

input

USER : ANY_STRING name of the user

output

STATE : BOOL TRUE if the given user was imported from an Active Directory;
 FALSE otherwise

 ST-Script Guidelines 1.38

 Page 527 of 562

USER_HASRFID

Checks whether a given user supports RFID authentication.

STATE = USER_HASRFID (USER)

input

USER : ANY_STRING name of the user

output

STATE : BOOL TRUE if the given user supports RFID authentication;
 FALSE otherwise

 ST-Script Guidelines 1.38

 Page 528 of 562

USER_GROUPGETNAME

Retrieves the name of a group with a known ID.

GROUP = USER_GROUPGETNAME (ID)

input

ID : UDINT ID of the users group;
 the ID is defined as the index (base-0) of the group within the project

output

GROUP : WSTRING name of the users group

Scripts don't normally reference users groups through IDs; their usage though allows the programmer to
browse the names of the existing groups.

 ST-Script Guidelines 1.38

 Page 529 of 562

USER_GROUPGETID

Retrieves the ID of a group with a known name.

ID = USER_GROUPGETID (GROUP)

input

GROUP : ANY_STRING name of the users group

output

ID : UDINT ID of the users group;
 the ID is defined as the index (base-0) of the group within the project

Scripts don't normally reference users groups through IDs; their usage though allows the programmer to
browse the names of the existing groups.

 ST-Script Guidelines 1.38

 Page 530 of 562

USER_GROUPLEVELSHOW

Retrieves the visualization privilege level of the users of a given group.
This function can be used only in case of level-users (an error would be raised otherwise).

LEVEL = USER_GROUPLEVELSHOW (GROUP)

input

GROUP : ANY_STRING name of the users group

output

LEVEL : UDINT visualization privilege level of the users of the given group

 ST-Script Guidelines 1.38

 Page 531 of 562

USER_GROUPLEVELUSE

Retrieves the interaction privilege level of the users of a given group.
This function can be used only in case of level-users (an error would be raised otherwise).

LEVEL = USER_GROUPLEVELUSE (GROUP)

input

GROUP : ANY_STRING name of the users group

output

LEVEL : UDINT interaction privilege level of the users of the given group

 ST-Script Guidelines 1.38

 Page 532 of 562

USER_FLUSH

Flushes on persistent storage the records related to users' events (the records could still be held in system
buffers or in files caches).

USER_FLUSH ()

This function is meant to be used in cases where the FDA auditor is not enabled, and the only logged runtime
events are those coming from the users.
In case the FDA functionalities are enabled, being the users' events a subset of those logged by the FDA itself,
this function is exactly the same as the AUDIT_FLUSH.

 ST-Script Guidelines 1.38

 Page 533 of 562

USER_EXPORT

Exports on file the records (all or in part) logged due to users' actions and changes.

USER_EXPORT (FILE, MODE, [, FROM [, TO]])

input

FILE : ANY_STRING path and name of the exported file
MODE : ANY_INT type of the exported file; can be one of the following:

0 (FILECSV) the file is exported in CSV mode
1 (FILEPDF) the file is exported in PDF mode

FROM : ANY_DATE [OPTIONAL] timestamp of the oldest exported record
 this parameter can actually be of the following types only:
 DT, LDT, DATE
TO : ANY_DATE [OPTIONAL] timestamp of the most recent exported record
 this parameter can actually be of the following types only:
 DT, LDT, DATE

The 3rd and 4th parameters are optional: they are meant to allow the export of specific ranges of records,
starting from, and terminating to, given time markers.
If both parameters are missing, the export method will export all the logged records;
if at least the 3rd parameter exists, the export method will not export records older than the given time;
if the 4th parameter exists too, the export method will not export records newer than the given time; otherwise
it will go on up to the end of the log.

FILE, MODE export the whole file
FILE, MODE, FROM export records with at least the FROM timestamp
FILE, MODE, FROM, TO export records with timestamps between FROM and TO

Note that in case the FDA auditor functionalities are enabled, the users' events records are essentially a subset
of the records logged by the FDA itself. Whereas the AUDIT_EXPORT exports everything though, the records
exported by this function are still limited to those strictly related to the users.

example

USER_EXPORT ('/home/esa/test1.txt', FILECSV);

USER_EXPORT ('/home/esa/test2.txt', FILECSV, MAKELDT(2019,1,1,0,0,0,0));

USER_EXPORT ('/home/esa/test3.txt', FILEPDF, DT#2019-1-1-0:0:0, DT#2019-2-1-0:0:0);

 ST-Script Guidelines 1.38

 Page 534 of 562

USER_PRINT

Prints the records (all or in part) logged due to users' actions and changes.

USER_PRINT ([FROM [, TO]])

input

FROM : ANY_DATE [OPTIONAL] timestamp of the oldest printed record
 this parameter can actually be of the following types only:
 DT, LDT, DATE
TO : ANY_DATE [OPTIONAL] timestamp of the most recent printed record
 this parameter can actually be of the following types only:
 DT, LDT, DATE

The 2nd and 3rd parameters are optional: they are meant to allow the export of specific ranges of records,
starting from, and terminating to, given time markers.
See USER_EXPORT for notes and examples regarding the usage of the time range parameters.

Note that in case the FDA auditor functionalities are enabled, the users' events records are essentially a subset
of the records logged by the FDA itself. Whereas the AUDIT_PRINT prints everything though, the records printed
by this function are still limited to those strictly related to the users.

 ST-Script Guidelines 1.38

 Page 535 of 562

USER_RESET

Resets the users, with all their passwords and properties, to the state originally defined in the project.

USER_RESET ()

All the changes made at runtime will be lost.

This operation is subject to validation, based on the privilege levels of the user responsible for the script
execution (being run in the server, the responsible user is often the current server user):
- this operation is reserved to users with recognized administrative levels: this means only users with both
visualization and interaction privilege levels set to 1 (maximum priority).
See the beginning of the users' chapter for notes about server users.

 ST-Script Guidelines 1.38

 Page 536 of 562

USER_IMPORTNETWORK

Imports the users list from the Active Directory of the network specified in the project.

USER_IMPORTNETWORK ([USER, PASSWORD [, NETWORK, PATH, FILTER]])

input

USER : ANY_STRING [OPTIONAL] user-name for network authentication
PASSWORD : ANY_STRING [OPTIONAL] user password for network authentication
NETWORK : ANY_STRING [OPTIONAL] name of the network server;
 can also be the server IP address in string form
PATH : ANY_STRING [OPTIONAL] path of an Active Directory branch;
 only users from the given AD part will be imported
FILTER : ANY_STRING [OPTIONAL] filter for Active Directory records recognition;
 only users matching the given filter will be imported

Programmers are allowed to invoke this method with 3 parameters configurations only:
- giving no parameter at all;
- giving only the first 2 parameters;
- giving all the listed parameters.

The 1st and 2nd modes are the recommended ones; the 3rd might not be ideal, depending on the programmer
expectations. In details:
1) if no parameter is given, then the method will automatically use the properties given in the project Active
Directory configuration; this will ensure an optimal management of the Active Directory;
2) if only the first two parameters are given, then the programmer is still using the pre-configured Active
Directory, but intends to access it with a different/one-time authentication; the optimal management of the
Active Directory is still granted;
3) if all the parameters are given, then the programmer is referencing an Active Directory different from the
pre-configured one; in this case the users are imported from the specified network, but afterward they will
only be able to authenticate themselves in offline mode: automatic runtime operations like authentications or
updates of password expiration dates are always directed to the pre-configured Active Directory, so users
imported from alternate networks will not be able to interact with their network server, and will be forced to
work as simple runtime offline users (whereas users imported from the pre-configured network will be
authenticated by the Active Directory server itself).

example

USER_IMPORTNETWORK ();

USER_IMPORTNETWORK ('MyName', 'MyPwd', 'esahmi.lan', 'DC=esahmi,DC=lan', '(objectCategory=person)');

 ST-Script Guidelines 1.38

 Page 537 of 562

USER_EXPORTGROUPMATRIX

Export the whole group permissions matrix.
This function can be used only in case of matrix-users (an error would be raised otherwise).

USER_EXPORTGROUPMATRIX (FILE)

input

FILE : ANY_STRING path and name of exported file

 ST-Script Guidelines 1.38

 Page 538 of 562

USER_IMPORTGROUPMATRIX

Import a whole group permissions matrix.
This function can be used only in case of matrix-users (an error would be raised otherwise).

AUTHORIZATIONS = USER_IMPORTGROUPMATRIX (FILE)

input

FILE : ANY_STRING path and name of imported file

output

AUTHORIZATIONS : UDINT number of imported authorizations (number of columns in the matrix);
 note that the number of rows is fixed since it must exactly match the

number of groups configured in the project

 ST-Script Guidelines 1.38

 Page 539 of 562

USER_EXPORTGEOMATRIX

Export the whole geographic permissions matrix.
This function can be used only in case of matrix-users (an error would be raised otherwise).

USER_EXPORTGEOMATRIX (FILE)

input

FILE : ANY_STRING path and name of exported file

 ST-Script Guidelines 1.38

 Page 540 of 562

USER_IMPORTGEOMATRIX

Import a whole geographic permissions matrix.
This function can be used only in case of matrix-users (an error would be raised otherwise).

AUTHORIZATIONS = USER_IMPORTGEOMATRIX (FILE)

input

FILE : ANY_STRING path and name of imported file

output

AUTHORIZATIONS : UDINT number of imported authorizations (number of columns in the matrix);
 note that the number of rows is fixed since it must exactly match the

number of client machines configured in the project

 ST-Script Guidelines 1.38

 Page 541 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

USERPWDALPHA 0 USER_ADD, USER_SETPASSWORD
USERPWDGRAPHIC 1 USER_ADD, USER_SETPASSWORD

USERPWDNOLIMIT 0 USER_ADD, USER_SETVALIDITY, USER_GETVALIDITY
USERPWDGLOBALLIMIT 0xFFFFFFFF (-1) USER_ADD, USER_SETVALIDITY

USERNOLANGUAGE 0 USER_ADD, USER_SETLANGUAGE, USER_GETLANGUAGE

USERTYPENORMAL 0 USER_JOINLIST
USERTYPECOPY 1 USER_JOINLIST
USERTYPEHIDDEN 2 USER_JOINLIST

USERUNLOCKED 0 USER_ISLOCKED
USERLOCKED 1 USER_ISLOCKED
USERPERMANENTLOCK 2 USER_ISLOCKED

 ST-Script Guidelines 1.38

 Page 542 of 562

17. RUNTIME - PIPELINES

PIPELINE_ENABLE

Enables the automatic activity of a pipeline.

PIPELINE_ENABLE (PIPELINE)

input

PIPELINE : ANY_STRING name of the needed pipeline

Note that it is not possible to enable or disable pipelines with manual (COMMAND) trigger, since these pipelines
have no automatic activity; the operation is only allowed with pipelines with execution mode VARIATION,
CONTINUOUS, TAGTRIGGER.
Also it is not possible to enable or disable pipelines with enabled mode ALWAYSON, since they are explicitly
configured to forbid these changes.

 ST-Script Guidelines 1.38

 Page 543 of 562

PIPELINE_DISABLE

Disables the automatic activity of a pipeline.

PIPELINE_DISABLE (PIPELINE)

input

PIPELINE : ANY_STRING name of the needed pipeline

Note that it is not possible to enable or disable pipelines with manual (COMMAND) trigger, since these pipelines
have no automatic activity; the operation is only allowed with pipelines with execution mode VARIATION,
CONTINUOUS, TAGTRIGGER.
Also it is not possible to enable or disable pipelines with enabled mode ALWAYSON, since they are explicitly
configured to forbid these changes.

 ST-Script Guidelines 1.38

 Page 544 of 562

PIPELINE_WRITE

Forces the execution of a single source-destination copy of a pipeline.

PIPELINE_WRITE (PIPELINE)

input

PIPELINE : ANY_STRING name of the needed pipeline

 ST-Script Guidelines 1.38

 Page 545 of 562

PIPELINE_ISENABLED

Checks whether a given pipeline is currently enabled or disabled.

STATE = PIPELINE_ISENABLED (PIPELINE)

input

PIPELINE : ANY_STRING name of the needed pipeline

output

STATE : BOOL TRUE if the pipeline is currently enabled;
 FALSE otherwise

 ST-Script Guidelines 1.38

 Page 546 of 562

PIPELINE_GETID

Retrieves the ID of a pipeline with a given name.

ID = PIPELINE_GETID (PIPELINE)

input

PIPELINE : ANY_STRING name of the needed pipeline

output

ID : UDINT the ID of the specified pipeline;
 IDs are defined as numeric indexes (base-1) arranged in a continuous sequence

The pipelines IDs are not actually needed by scripts programmer, since all the relevant methods expect the
usage of names instead.
This method is currently mostly intended for debugging purposes; in combination with PIPELINE_GETNAME and
PIPELINE_GETNUMBER, it allows to retrieve the complete list of the configured pipelines.

 ST-Script Guidelines 1.38

 Page 547 of 562

PIPELINE_GETNAME

Retrieves the name of a pipeline with a given ID.

PIPELINE = PIPELINE_GETNAME (ID)

input

ID : UDINT the ID of the needed pipeline;
IDs are defined as numeric indexes (base-1) arranged in a continuous sequence;
the value can range between 1 and PIPELINE_GETNUMBER

output

PIPELINE : WSTRING name of the specified pipeline

 ST-Script Guidelines 1.38

 Page 548 of 562

PIPELINE_GETNUMBER

Retrieves the number of pipelines configured in the current project.

NUMBER = PIPELINE_GETNUMBER ()

output

NUMBER : UDINT number of configured pipelines

 ST-Script Guidelines 1.38

 Page 549 of 562

18. RUNTIME - FDA

AUDIT_ENABLE

Enables the FDA auditor logging activity.

AUDIT_ENABLE ()

 ST-Script Guidelines 1.38

 Page 550 of 562

AUDIT_DISABLE

Disables the FDA auditor logging activity.

AUDIT_DISABLE ()

This method can be used only if the FDA system has been configured to actually support it: the FDA system can
be configured to disallow these requests; if this is the case, the method will fail.

example

VAR

 enabled : BOOL;

END_VAR;

enabled := AUDIT_ISENABLED (); // initial enabled state

ST_OPTION HANDLE_ERRORS; // enable blocking errors management

 ERRORRESET ();

 AUDIT_DISABLE ();

ST_OPTION BLOCKING_ERRORS;

IF ERRNO = 0 THEN

 // the DISABLE request succeeded

ELSE

 // the DISABLE request failed; might want to check the FDA configuration

END_IF;

enabled := AUDIT_ISENABLED (); // final enabled state

 ST-Script Guidelines 1.38

 Page 551 of 562

AUDIT_FLUSH

Flushes on persistent storage the records logged by the FDA auditor (the records could still be held in system
buffers or in files caches).

AUDIT_FLUSH ()

 ST-Script Guidelines 1.38

 Page 552 of 562

AUDIT_EXPORT

Exports on file the records (all or in part) logged by the FDA auditor.

AUDIT_EXPORT (FILE, MODE, SIGNATURE, [, FROM [, TO]])

input

FILE : ANY_STRING path and name of the exported file
MODE : ANY_INT type of the exported file; can be one of the following:

0 (FILECSV) the file is exported in CSV mode
1 (FILEPDF) the file is exported in PDF mode

SIGNATURE : ANY_STRING signature entered by the user requesting the export;
 if no signature is used, then an empty string has to be explicitly given
FROM : ANY_DATE [OPTIONAL] timestamp of the oldest exported record
 this parameter can actually be of the following types only:
 DT, LDT, DATE
TO : ANY_DATE [OPTIONAL] timestamp of the most recent exported record
 this parameter can actually be of the following types only:
 DT, LDT, DATE

The 4th and 5th parameters are optional: they are meant to allow the export of specific ranges of records,
starting from, and terminating to, given time markers.
If both parameters are missing, the export method will export all the records in the log;
if at least the 4th parameter exists, the export method will not export records older than the given time;
if the 5th parameter exists too, the export method will not export records newer than the given time; otherwise
it will go on up to the end of the log.

FILE, … export the whole file
FILE, …, FROM export records with at least the FROM timestamp
FILE, …, FROM, TO export records with timestamps between FROM and TO

example

AUDIT_EXPORT ('/home/esa/test1.txt', FILECSV, '');

AUDIT_EXPORT ('/home/esa/test2.txt', FILECSV, '', MAKELDT(2019,1,1,0,0,0,0));

AUDIT_EXPORT ('/home/esa/test3.txt', FILECSV, '', DT#2019-1-1-0:0:0, DT#2019-2-1-0:0:0);

 ST-Script Guidelines 1.38

 Page 553 of 562

AUDIT_RESET

Operates a full reset of the FDA auditor logs.

AUDIT_RESET (FILE, MODE, SIGNATURE)

input

FILE : ANY_STRING path and name of the exported file
MODE : ANY_INT type of the exported file; can be one of the following:

0 (FILECSV) the file is exported in CSV mode
1 (FILEPDF) the file is exported in PDF mode

SIGNATURE : ANY_STRING signature entered by the user requesting the reset;
 if no signature is used, then an empty string has to be explicitly given

The reset includes:
- a forced full export of the currently logged records;
- a cleanup of the whole log;
- a reset of a possible blocking error keeping the auditor inactive.

Note that only users with maximum (administration) rights are allowed to invoke the reset directive.

 ST-Script Guidelines 1.38

 Page 554 of 562

AUDIT_PRINT

Prints the records (all or in part) logged by the FDA auditor.

AUDIT_PRINT ([FROM [, TO]])

input

FROM : ANY_DATE [OPTIONAL] timestamp of the oldest printed record
 this parameter can actually be of the following types only:
 DT, LDT, DATE
TO : ANY_DATE [OPTIONAL] timestamp of the most recent printed record
 this parameter can actually be of the following types only:
 DT, LDT, DATE

The 2nd and 3rd parameters are optional: they are meant to allow the export of specific ranges of records,
starting from, and terminating to, given time markers.
See AUDIT_EXPORT for notes and examples regarding the usage of the time range parameters.

 ST-Script Guidelines 1.38

 Page 555 of 562

AUDIT_ISENABLED

Checks whether the FDA auditor is currently enabled or disabled.

STATE = AUDIT_ISENABLED ()

output

STATE : BOOL TRUE if the FDA auditor is currently enabled;
 FALSE otherwise

 ST-Script Guidelines 1.38

 Page 556 of 562

AUDIT_GETERROR

Retrieves the code of the error that is keeping the FDA auditor inactive.

ERROR = AUDIT_GETERROR ()

output

ERROR : ULINT code of the blocking error

If there is no error, this function returns 0; otherwise a non-0 error code.
This kind of blocking errors can happen when the FDA system is configured to be mandatory for the system.
When blocking errors happen, they will persist through system restarts; the only way to remove them is a
complete FDA system reset (see AUDIT_RESET).

 ST-Script Guidelines 1.38

 Page 557 of 562

AUDIT_GETNUMBER

Retrieves the number of records currently logged by the FDA auditor.

NUMBER = AUDIT_GETNUMBER ()

output

NUMBER : UDINT number of logged records

 ST-Script Guidelines 1.38

 Page 558 of 562

AUDIT_READ

Reads a record from the FDA auditor logs.

ID = AUDIT_READ (INDEX)

input

INDEX : ANY_INT index (base-0) of the needed record
 can be any value between 0 and the number of logged records (-1);
 the number of records can be retrieved with a call to AUDIT_GETNUMBER

output

ID : UDINT the ID of the retrieved record;
 in case of successful readings, this could be any positive value;
 in case of failure, the returned value is AUDITNOID (0xFFFFFFFF)

After a record has been successfully read, the following variables can be used to retrieve its data:

AUDIT_READMODULE name of the related runtime module
AUDIT_READACTION name of the related runtime action
AUDIT_READTIME timestamp of the record (time of the logged action)
AUDIT_READUSER name of the responsible user
AUDIT_READCLIENT name of the responsible client (matrix users only)
AUDIT_READOBJECT description of the related runtime object
AUDIT_READCOMMENT comment associated to the event
AUDIT_READREASON operation reason entered by user at runtime
AUDIT_READSIGNATURE electronic signature of involved user
AUDIT_READTAGNAME name of the tag involved in the event
AUDIT_READTAGADD symbolic address of the tag involved in the event
AUDIT_READOLDVALUE old tag value (in case of edited tag event)
AUDIT_READNEWVALUE new tag value (in case of edited tag event)

Note that the given variables are meant to retain the values coming from the last successful read function
invocation; in case of errors (AUDITNOID) returned by this AUDIT_READ, these variables values will remain
unchanged.

example

VAR

 recnum : UDINT;

 recidx : UDINT;

 recid : UDINT;

 record : WSTRING [256];

END_VAR;

recnum := AUDIT_GETNUMBER ();

FOR recidx := 0 TO recnum-1 DO

 recid := AUDIT_READ (recidx);

 IF (recid <> AUDITNOID) THEN

 record := ANY_TO_STRING(AUDIT_READTIME) + ' - M : ' + AUDIT_READMODULE

 + ' , A : ' + AUDIT_READACTION;

 // ... do whatever needed with the retrieved information ...

 END_IF;

END_FOR;

 ST-Script Guidelines 1.38

 Page 559 of 562

< VARIABLES >

The following are the variables usable to share information and directives for the auditor management:

AUDIT_READMODULE type STRING
 access R

gives the name of the runtime module related to the logged record
returned by the last successful call to AUDIT_READ

AUDIT_READACTION type STRING
 access R

gives the name of the runtime event/action related to the logged record
returned by the last successful call to AUDIT_READ

AUDIT_READTIME type LDT
 access R

gives the timestamp of the logged record returned by the last successful
call to AUDIT_READ

AUDIT_READUSER type STRING
 access R

gives the name of the responsible user related to the logged record
returned by the last successful call to AUDIT_READ

AUDIT_READCLIENT type STRING
 access R

gives the name of the responsible client related to the logged record
returned by the last successful call to AUDIT_READ (meaningful in case of
matrix users only)

AUDIT_READOBJECT type STRING
 access R

gives a description of the runtime object related to the logged record
returned by the last successful call to AUDIT_READ

AUDIT_READCOMMENT type STRING
 access R

gives the embedded comment appended to the logged record returned by
the last successful call to AUDIT_READ

AUDIT_READREASON type STRING
 access R

gives the reason entered at runtime by the user, appended to the logged
record returned by the last successful call to AUDIT_READ

AUDIT_READSIGNATURE type STRING
 access R

gives the electronic signature entered by the involved user (if needed by
user and required by specific event, only loggable by UI-clients events)
appended to the logged record returned by the last successful call to
AUDIT_READ

AUDIT_READTAGNAME type STRING
 access R

 ST-Script Guidelines 1.38

 Page 560 of 562

gives the name of the tag appended to the logged record returned by the
last successful call to AUDIT_READ (meaningful in case of tag-events only)

AUDIT_READTAGADD type STRING
 access R

gives the symbolic address of the tag appended to the logged record
returned by the last successful call to AUDIT_READ (meaningful in case of
tag-events only, and only in case of tags with symbolic address)

AUDIT_READOLDVALUE type STRING
 access R

gives the old tag value (in case of tag editing event, only loggable by UI-
clients) appended to the logged record returned by the last successful call
to AUDIT_READ

AUDIT_READNEWVALUE type STRING
 access R

gives the new tag value (in case of tag editing event, only loggable by UI-
clients) appended to the logged record returned by the last successful call
to AUDIT_READ

 ST-Script Guidelines 1.38

 Page 561 of 562

< CONSTANTS >

The following symbolics can be used as numeric constants.
The symbolics could be used anywhere in the scripts, regardless the context, and are treated exactly as if the
corresponding numeric value were written in their place.
They are intended, though, to be used as self-explanatory values while passing arguments to the relevant
methods:

symbolic value relevant methods

AUDITNOID 0xFFFFFFFF (-1) AUDIT_READ

 ST-Script Guidelines 1.38

 Page 562 of 562

Connect
ideas.

shape
solutions.

ESA S.p.A. | www.esa-automation.com |

	1. Document Scope
	2. Functions List
	3. Standard ST LANGUAGE
	ADD
	SUB
	MUL
	DIV
	MOD
	ABS
	SQRT
	LN
	LOG
	EXP
	POW
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	FRACTION
	TRUNC
	ROUND
	MIN
	MAX
	LIMIT
	SEL
	MUX
	RND
	SHL
	SHR
	ROL
	ROR
	AND
	OR
	XOR
	NOT
	LT
	LE
	GT
	GE
	EQ
	NE
	LEN
	LEFT
	RIGHT
	MID
	CONCAT
	INSERT
	DELETE
	REPLACE
	REVERSE
	SPLIT
	FIND
	RFIND
	LCASE
	UCASE
	TRIM
	LTRIM
	RTRIM
	SETLENGTH
	HEX
	OCT
	BIN
	ASC
	ISSTRUCTURE
	ISFUNCTION
	ISARRAY
	NUMDIM
	LBOUND
	UBOUND
	SIZEOF
	TYPEOF
	DEG_TO_RAD
	RAD_TO_DEG
	BCD_TO_BIN
	BIN_TO_BCD
	ANY_TO_SINT
	ANY_TO_INT
	ANY_TO_DINT
	ANY_TO_LINT
	ANY_TO_USINT
	ANY_TO_UINT
	ANY_TO_UDINT
	ANY_TO_ULINT
	ANY_TO_REAL
	ANY_TO_LREAL
	ANY_TO_TIME
	ANY_TO_LTIME
	ANY_TO_DATE
	ANY_TO_TOD
	ANY_TO_LTOD
	ANY_TO_DT
	ANY_TO_LDT
	ANY_TO_STRING
	ANY_TO_WSTRING
	ANY_TO_CHAR
	ANY_TO_WCHAR
	ANY_TO_BOOL
	ANY_TO_BYTE
	ANY_TO_WORD
	ANY_TO_DWORD
	ANY_TO_LWORD
	< constants >

	4. SYSTEM
	TRACE
	RUNAPPLICATION
	KILLAPPLICATION
	RUNSCRIPT
	EXITRUNTIME
	SLEEP
	LSLEEP
	ERRORGETMESSAGE
	ERRORGETMODULE
	ERRORRESET
	FLUSHCONFIG
	FLUSHPERSISTENT
	REFRESHIPADDRESSES
	SETRESTAPIPREFIX
	SETRESTAPIRESPONSE
	SENDRESTAPIREQUEST
	GETRESTAPIRESPONSE
	SETTIMESSYTEM
	GETTIMESYSTEM
	GETNUMCLIENTSWEB
	GETNUMCLIENTSUI
	GETNUMCLIENTSNET
	LANGUAGEGET
	LANGUAGESET
	LANGUAGENEXT
	LANGUAGEPREVIOUS
	GETURL
	GETTICKS
	GETLTICKS
	SETRTC
	SETRTC_UTC
	GETRTCTOD
	GETRTCLTOD
	GETRTCDATE
	GETRTCDT
	GETRTCLDT
	GETRTCTOD_UTC
	GETRTCLTOD_UTC
	GETRTCDATE_UTC
	GETRTCDT_UTC
	GETRTCLDT_UTC
	REFRESHRTC
	UTC_TO_LOCAL
	LOCAL_TO_UTC
	GETYEAR
	GETMONTH
	GETDAY
	GETWEEKDAY
	GETHOURS
	GETMINUTES
	GETSECONDS
	GETMSECONDS
	GETNSECONDS
	MAKETOD
	MAKELTOD
	MAKEDATE
	MAKEDT
	MAKELDT
	GETCLIENTID
	SETCLIENTDEBUGRIGHTS
	GETCLIENTDEBUGRIGHTS
	GETCLIENTDEBUGSTATE
	SETCLIENTOFFSCAN
	GETCLIENTOFFSCAN
	SETCLIENTKEYBURST
	GETCLIENTKEYBURST
	SAVESCREEN
	BEEP
	BEEPON
	BEEPOFF
	LIGHTUP
	LIGHTDOWN
	LIGHTSET
	LIGHTGET
	LIGHTGETMAX
	SHOWTASKBAR
	SETHHLEDSTATE
	< variables >
	< constants >

	5. Common - FILES
	FILE_EXIST
	FILE_COPY
	FILE_DELETE
	FILE_RENAME
	FILE_CREATEDIR
	FILE_DELETEDIR
	FILE_GETSIZE
	FILE_SETSIZE
	FILE_GETTIMECREATION
	FILE_GETTIMEWRITE
	FILE_GETTIMEACCESS
	FILE_ISDIRECTORY
	FILE_FINDFIRST
	FILE_FINDNEXT
	FILE_FINDCLOSE
	FILE_AVAILABLESPACE
	FILE_ABSOLUTEPATH
	FILE_OPEN
	FILE_CLOSE
	FILE_FLUSH
	FILE_REWIND
	FILE_SEEK
	FILE_ISEOF
	FILE_GETLENGTH
	FILE_GETPOSITION
	FILE_WRITEENCODING
	FILE_READENCODING
	FILE_SETENCODING
	FILE_GETENCODING
	FILE_READBYTE
	FILE_READWORD
	FILE_READDWORD
	FILE_READLWORD
	FILE_READBUFFER
	FILE_READSTRING
	FILE_READLINE
	FILE_WRITE
	FILE_GETREADLENGTH
	< variables >
	< constants >

	6. Common - SERIAL
	COM_OPEN
	COM_CLOSE
	COM_FLOW
	COM_ISOPEN
	COM_DATALENGTH
	COM_READBYTE
	COM_READBUFFER
	COM_WRITE
	COM_CLEAR
	COM_GETCTS
	COM_GETDSR
	COM_GETRING
	COM_GETRLSD
	COM_SETRTS
	COM_SETDTR
	COM_SET485
	< variables >
	< constants >

	7. Common - ETHERNET
	ETH_IP
	ETH_GETIP
	ETH_PING
	ETH_TCPC_OPEN
	ETH_TCPC_CLOSE
	ETH_TCPC_GETIPLOCAL
	ETH_TCPC_GETIPSERVER
	ETH_TCPC_DATALENGTH
	ETH_TCPC_READBYTE
	ETH_TCPC_READBUFFER
	ETH_TCPC_READSTRING
	ETH_TCPC_READWSTRING
	ETH_TCPC_WRITE
	ETH_TCPS_OPEN
	ETH_TCPS_CLOSE
	ETH_TCPS_CLIENTSNUMBER
	ETH_TCPS_GETIPLOCAL
	ETH_TCPS_GETIPCLIENT
	ETH_TCPS_DATALENGTH
	ETH_TCPS_READBYTE
	ETH_TCPS_READBUFFER
	ETH_TCPS_READSTRING
	ETH_TCPS_READWSTRING
	ETH_TCPS_WRITE
	ETH_UDP_OPEN
	ETH_UDP_CLOSE
	ETH_UDP_GETIPLOCAL
	ETH_UDP_DATALENGTH
	ETH_UDP_READBYTE
	ETH_UDP_READBUFFER
	ETH_UDP_READSTRING
	ETH_UDP_READWSTRING
	ETH_UDP_WRITE
	< variables >
	< constants >

	8. Common - LIBRARIES
	LIBRARY_LOAD
	LIBRARY_RELEASE
	LIBRARY_FXLOAD
	LIBRARY_FXRELEASE
	LIBRARY_FXCALL
	COMLIB_LOAD
	COMLIB_RELEASE
	COMLIB_FXLOAD
	COMLIB_FXRELEASE
	COMLIB_FXCALL
	COMLIB_PROPGET
	COMLIB_PROPSET
	COMVAR_CREATE
	COMVAR_DESTROY
	COMVAR_CLEANUP
	COMVAR_COPY
	COMVAR_DIMARRAY
	COMVAR_GETNUMDIM
	COMVAR_GETLBOUND
	COMVAR_GETUBOUND
	COMVAR_SET
	COMVAR_SETELEMENT
	COMVAR_GET
	COMVAR_GETELEMENT
	< variables >
	< constants >

	9. Common - PRINT
	PDF_OPEN
	PDF_CLOSE
	PDF_NEWPAGE
	PDF_SETCOLOR
	PDF_SETLINEWIDTH
	PDF_SETFONT
	PDF_SETFONTNAME
	PDF_SETFONTSIZE
	PDF_SETFONTBOLD
	PDF_SETFONTITALIC
	PDF_SETFONTUNDERLINE
	PDF_DRAWTEXT
	PDF_DRAWLINE
	PDF_DRAWLINEH
	PDF_DRAWLINEV
	PDF_DRAWRECTANGLE
	PDF_DRAWCIRCLE
	PDF_DRAWELLIPSE
	PDF_DRAWIMAGE
	PDF_GETTEXTWIDTH
	REPORT_EXPORT
	REPORT_ENABLESECTION
	< variables >
	< constants >

	10. Common - EXTERNAL
	EW_ON
	EW_OFF
	EW_ENABLE
	EW_DISABLE
	EW_STATE
	EW_EXIST
	MSG_EMAIL
	MSG_EMAILLIST
	MSG_APPNOTIFICATION
	MSG_APPNOTIFICATIONLIST
	MSG_SMS
	MSG_SMSLIST

	11. Runtime - TIMERS
	TIMER_START
	TIMER_STOP
	TIMER_SUSPEND
	TIMER_SETLIMIT
	TIMER_GETLIMIT
	TIMER_SETPROGRESS
	TIMER_GETPROGRESS
	TIMER_ISSTARTED
	TIMER_ISSUSPENDED

	12. Runtime - TAGS
	TAG_GETVALUE
	TAG_SETVALUE
	TAG_FLUSHVALUE
	TAG_READVALUE
	TAG_WRITEVALUE
	TAG_READELEMENT
	TAG_WRITEELEMENT
	TAG_READBIT
	TAG_WRITEBIT
	TAG_READITEM
	TAG_WRITEITEM
	TAG_GETID
	TAG_GETNAME
	TAG_GETSHAREDID
	TAG_GETIDFROMSHARED
	TAG_GETVALUETYPE
	TAG_GETSTRLENGTH
	TAG_GETARRAYSIZE
	TAG_GETDEVICEID
	TAG_GETAREAID
	TAG_GETADDRESS
	TAG_GETFIELDOFFSET
	TAG_GETFIELDADDRESS
	TAG_GETFIELDVALUE
	TAG_SETFIELDVALUE
	TAG_ASSIGNSTRUCT
	TAG_GETNUMBERALL
	TAG_GETNUMBEREXT
	TAG_GETCLIENTTAGNAME
	TAG_ISOFFLINE
	TAG_ISOFFSCAN
	TAG_SETOFFSCAN
	TAG_SETOFFSCANDEV
	TAG_DEVICESNUMBER
	TAG_DEVICEGETID
	TAG_DEVICEGETNAME
	TAG_AREASNUMBER
	TAG_AREAGETID
	TAG_AREAGETNAME
	TAG_FLUSH
	< constants >

	13. Runtime - ALARMS
	ALARM_ON
	ALARM_OFF
	ALARM_ACKSINGLE
	ALARM_ACKINSTANCES
	ALARM_ACKGROUP
	ALARM_ACKALL
	ALARM_ISON
	ALARM_HISTORYRESET
	ALARM_HISTORYFLUSH
	ALARM_STATSRESET
	ALARM_STATSFLUSH
	ALARM_EXPORT
	ALARM_EXPORTHISTORY
	ALARM_EXPORTSTATS
	ALARM_EXPORTCONFIG
	ALARM_PRINT
	ALARM_PRINTHISTORY
	ALARM_PRINTSTATS
	ALARM_GETNUMBER
	ALARM_GETNUMISA
	ALARM_GETNUMEVENTS
	ALARM_GETNUMACK
	ALARM_GETNUMHISTORY
	ALARM_GETNUMINSTANCES
	ALARM_GETINSTANCEID
	ALARM_GETINFO
	ALARM_GETNAMEFROMKEY
	ALARM_GETIDFROMKEY
	ALARM_GETMSGFROMKEY
	ALARM_GETFIRSTPRJ
	ALARM_GETNEXTPRJ
	ALARM_GETFIRSTON
	ALARM_GETNEXTON
	ALARM_GETFIRSTACTIVE
	ALARM_GETNEXTACTIVE
	ALARM_GETFIRSTHISTORY
	ALARM_GETNEXTHISTORY
	ALARM_GETFIRSTHPACK
	ALARM_GETNEXTHPACK
	< variables >

	14. Runtime - RECIPES
	RECIPE_LOAD
	RECIPE_SAVE
	RECIPE_DOWNLOAD
	RECIPE_UPLOAD
	RECIPE_DOWNLOADBUF
	RECIPE_UPLOADBUF
	RECIPE_TRANSFERBUSY
	RECIPE_TRANSFERWAIT
	RECIPE_DELETE
	RECIPE_RENAME
	RECIPE_PACKARCHIVE
	RECIPE_CLEARBUFFER
	RECIPE_COMPARE
	RECIPE_COMPARESET
	RECIPE_COMPAREFIELD
	RECIPE_EXPORT
	RECIPE_EXPORTFLAT
	RECIPE_IMPORT
	RECIPE_PRINT
	RECIPE_GETCURNAME
	RECIPE_EXIST
	RECIPE_GETNUMBER
	RECIPE_GETRECORDS
	RECIPE_GETINFO
	RECIPE_GETID
	RECIPE_GETFIELDSNUMBER
	RECIPE_GETFIELDNAME
	RECIPE_GETFIELDINDEX
	RECIPE_GETCOMPAREINDEX
	RECIPE_GETFIELDVALUE
	RECIPE_SETFIELDVALUE
	RECIPE_SETFIELDEXPORT
	RECIPE_GETSTRRECORD
	RECIPE_GETSTRRECORDS
	RECIPE_GETTAGNAME
	< variables >
	< constants >

	15. Runtime - SAMPLES
	DLOG_ENABLE
	DLOG_DISABLE
	DLOG_RESETSAMPLES
	DLOG_ACQUIRESAMPLES
	DLOG_ACQUISITIONBUSY
	DLOG_ACQUISITIONWAIT
	DLOG_APPENDSAMPLES
	DLOG_FLUSH
	DLOG_EXPORT
	DLOG_PRINT
	DLOG_EXPORTBUSY
	DLOG_EXPORTTERMINATE
	DLOG_EXPORTWAIT
	DLOG_EXPORTCONFIG
	DLOG_ISENABLED
	DLOG_GETNUMSAMPLES
	DLOG_GETSAMPLE
	DLOG_GETDISCARDINVALID
	DLOG_SETDISCARDINVALID
	< variables >
	< constants >

	16. Runtime - USERS
	USER_ADD
	USER_REMOVE
	USER_SETPASSWORD
	USER_SETVALIDITY
	USER_SETGROUP
	USER_SETSIGNATURE
	USER_SETRFID
	USER_SETLANGUAGE
	USER_SETEMAIL
	USER_SETTELNUMBER
	USER_LOCK
	USER_UNLOCK
	USER_PERMANENTLOCK
	USER_JOINLIST
	USER_LEAVELIST
	USER_RESETLISTS
	USER_GETCURRENTNAME
	USER_GETCURRENTGROUP
	USER_GETCURRENTSHOW
	USER_GETCURRENTUSE
	USER_GETGROUP
	USER_GETLEVELSHOW
	USER_GETLEVELUSE
	USER_GETLANGUAGE
	USER_GETEMAIL
	USER_GETTELNUMBER
	USER_GETVALIDITY
	USER_GETCREATION
	USER_GETEXPIRATION
	USER_ISLOCKED
	USER_ISIMPORTED
	USER_HASRFID
	USER_GROUPGETNAME
	USER_GROUPGETID
	USER_GROUPLEVELSHOW
	USER_GROUPLEVELUSE
	USER_FLUSH
	USER_EXPORT
	USER_PRINT
	USER_RESET
	USER_IMPORTNETWORK
	USER_EXPORTGROUPMATRIX
	USER_IMPORTGROUPMATRIX
	USER_EXPORTGEOMATRIX
	USER_IMPORTGEOMATRIX
	< constants >

	17. Runtime - PIPELINES
	PIPELINE_ENABLE
	PIPELINE_DISABLE
	PIPELINE_WRITE
	PIPELINE_ISENABLED
	PIPELINE_GETID
	PIPELINE_GETNAME
	PIPELINE_GETNUMBER

	18. Runtime - FDA
	AUDIT_ENABLE
	AUDIT_DISABLE
	AUDIT_FLUSH
	AUDIT_EXPORT
	AUDIT_RESET
	AUDIT_PRINT
	AUDIT_ISENABLED
	AUDIT_GETERROR
	AUDIT_GETNUMBER
	AUDIT_READ
	< variables >
	< constants >

